Introduction

Time-Series Data: A time series is a set of measurements, ordered over time, on a particular quantity of interest.

- Numerical data ordered over time
- The time intervals can be annually, quarterly, daily, hourly, etc.
- The sequence of the observations is important
- Example:

Year:	2008	2009	2010	2011	2012
Sales:	75.3	74.2	78.5	79.7	80.2

Copyright © 2013, 2010, 2007 Pearson Education, Inc. All Rights Reserved

The Importance of Forecasting

The Importance of Forecasting

- Government needs to forecast unemployment, interest rates, expected revenues from income taxes to formulate policies
- Marketing executives need to forecast demand, sales, consumer preferences in strategic planning
- College administrators need to forecast enrollments to plan for facilities and for faculty recruitment
- Retail stores need to forecast demand to control inventory levels, hire employees and provide training

Time-Series Plot

A time-series plot is a two-dimensional plot of time-series data

- the vertical axis measures the variable of interest
- the horizontal axis corresponds to the time periods

Trend Component (1 of 2)

Pearson

- Long-run increase or decrease over time (overall upward or downward movement)
- Data taken over a long period of time

Trend Component (2 of 2)

- Trend can be upward or downward
- Trend can be linear or non-linear

Seasonal Component

Pearson

- Short-term regular wave-like patterns
- Observed within 1 year
- Often monthly or quarterly

Cyclical Component

- Long-term wave-like patterns
- Regularly occur but may vary in length
- Often measured peak to peak or trough to trough

Copyright © 2013, 2010, 2007 Pearson Education, Inc. All Rights Reserved

Irregular Component

- Unpredictable, random, "residual" fluctuations
- Due to random variations of
 - Nature
 - Accidents or unusual events
- "Noise" in the time series

Time Series Forecasts

Uses time-ordered sequence of observations at regular intervals

- <u>Trend</u> long-term movement in data
- <u>Seasonality</u> short-term regular variations in data
- <u>Cycle</u> wavelike variations of more than one year's duration
- Irregular variations caused by unusual circumstances
- Random variations caused by chance

Techniques for Averaging

- Moving average
- Weighted moving average
- Exponential smoothing

Moving Averages

 <u>Moving average</u> – A technique that averages a number of recent actual values, updated as new values become available.

 $A_{t-n} + \dots A_{t-2} + A_{t-1}$

n

 $F_t = MA_n =$

 <u>Weighted moving average</u> – More recent values in a series are given more weight in computing the forecast.

$$F_{t} = W_{1}A_{t-1} + W_{2}A_{t-2} + W_{3}A_{t-3} + \dots + W_{n}A_{t-n}$$

Moving Average Example

Calculate a three-period moving average forecast for demand in period 6

Period	Demand	
1	42	
2	40	
3	ן 43	
4	40 }	the 3 most recent demands
5	41]	
F_6	$=\frac{43+4}{2}$	$\frac{40 + 41}{3} = 41.33$

If the actual demand in period 6 is 38, then the moving average forecast for period 7 is:

$$F_7 = \frac{40 + 41 + 38}{3} = 39.67$$

3-12

Simple Moving Average

Takeaways:

- Fewer data points (e.g., the 3 month moving average) is more sensitive to real life and is a more dynamic forecast.
- Larger data points (e.g., the 5 month moving average) is smoother (less reactionary)

Weighted Moving Average Example

Period	Demand	Weight
1	42	
2	40	10%
2	10	00%
3	43	20%
Δ	40	30%
-1	-10	0070
5	41	40%

 $F_6 = .10(40) + .20(43) + .30(40) + .40(41) = 41.0$

Takeaways:

- Choice of weights must add up to 100%
- Choice of weights are discretionary
- Choice of weights are often based on trial and error, and forecaster's experience.

Exponential Smoothing

 $F_{t} = F_{t-1} + \alpha(A_{t-1} - F_{t-1})$

- *Premise*--The most recent observations might have the highest predictive value.
 - Therefore, we should give more weight to the more recent time periods when forecasting.
 - Uses most recent period's actual and forecast data
- Weighted averaging method based on previous forecast plus a percentage of the forecast error
- *A-F* is the error term, α is the % feedback

Exponential Smoothing Example

Period (t)	Actual Demand
1	42 -
2	40
3	43
4	40
5	41
6	39
7	46
8	44
9	45
10	38
11	40

Exponential Smoothing Example

Period (t)	Actual Demand	$\alpha = .10$ Forecast	$\alpha = .40$ Forecast	Period 2 forecast
1	42starting for	PCact —	_	is a naïve
2	40	42	▶ 42	forecast
3	43	41.8	41.2	
4	40	41.92	41.92	
5	41	41.73	41.15	
6	39	41.66	41.09	
7	46	41.39	40.25	
8	44	41.85	42.55	
9	45	42.07	43.13	
10	38	42.35	43.88	
11	40	41.92	41.53	
12		41.73	40.92	

$$F_3 = F_2 + \alpha (A_2 - F_2)$$

$$\alpha = 0.10, F_3 = 42 + 0.10(40 - 42) = 42 + 0.10 \times (-2) = 42 - 0.2 = 41.8$$

 $F_4 = F_3 + \alpha (A_3 - F_3)$ $\alpha = 0.10, F_4 = 41.8 + 0.10(43 - 41.8) = 41.8 + 0.10 \times 1.2 = 41.8 + 0.12 = 41.92$

Picking a Smoothing Constant

Takeaway:

- Low α, less sensitive to forecast error, relatively smoother (stable) forecast
- Large α, more sensitive to forecast error, relatively more dynamic forecast

Linear Trend Equation

- F_t = Forecast for period t
- t = Specified number of time periods
- $a = Value of F_t at t = 0$
- b = Slope of the line

Calculating a and b

$$b = \frac{n \sum (ty) - \sum t \sum y}{n \sum t^2 - (\sum t)^2}$$

$$a = \frac{\sum y - b\sum t}{n}$$

Time-Series: Linear Trend Example

Period (Week)	Demand (Sales/Week)
1	150
2	157
3	162
4	166
5	177

Linear Trend Equation Example

	t		У	
	Week	t^2	Sales	ty
	1	1	150	150
Ī	2	4	157	314
ſ	3	9	162	486
	4	16	166	664
	5	25	177	885
	$\sum_{(\Sigma,t)^2} t = 15$	$\Sigma t^2 = 55$	$\Sigma y = 812$	Σ ty = 2499
	(21) = 225			

Linear Trend Calculation $b = \frac{5(2499) - 15(812)}{5(55) - 225} = \frac{12495 - 12180}{275 - 225} = 6.3$

$$a = \frac{812 - 6.3(15)}{5} = 143.5$$
$$y = 143.5 + 6.3t$$