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454 Chapter 12 Multiple Regression

Introduction

In Chapter 11 we developed simple regression as a procedure for obtaining a lin-
ear equation that predicts a dependent or endogenous variable as a function of 
a single independent or exogenous variable—for example, total number of items 
sold as a function of price. However, in many situations, several independent 
variables jointly influence a dependent variable. Multiple regression enables us 
to determine the simultaneous effect of several independent variables on a de-
pendent variable using the least squares principle.

Many important applications of multiple regression occur in business 
and economics. These applications include the following:

1.  The quantity of goods sold is a function of price, income, advertising, 
price of substitute goods, and other variables.

2.  Capital investment occurs when a business person believes that a profit 
can be made. Thus, capital investment is a function of variables related 
to the potential for profit, including interest rate, gross domestic prod-
uct, consumer expectations, disposable income, and technological level.

3. Salary is a function of experience, education, age, and job rank.
4.  Large retail, hotel, and restaurant companies decide on locations for new 

outlets based on the anticipated sales revenue and/or profitability. Using 
data from previous successful and unsuccessful locations, analysts can 
build models that predict sales or profit for a potential new location.

Business and economic analysis has some unique characteristics compared 
to analysis in other disciplines. Natural scientists work in a laboratory, where 
many—but not all—variables can be controlled. In contrast, the economist’s 
and manager’s laboratory is the world, and conditions cannot be controlled. 
Thus, we need tools such as multiple regression to estimate the simultaneous 
effect of several variables. Multiple regression as a “lab tool” is very important 
for the work of managers and economists. In this chapter we will see many 
specific applications in discussion examples and problem exercises.

The methods for fitting multiple regression models are based on the same 
least squares principle presented in Chapter 11, and, thus, the insights gained 
there extend directly to multiple regression. However, there are complexities 
introduced because of the relationships between the various exogenous vari-
ables. These require additional insights that are developed in this chapter.

12.1 THE MULTIPLE REGRESSION MODEL

Our objective here is to learn how to use multiple regression for creating and analyzing mod-
els. Thus, we learn how multiple regression works and some guidelines for interpretation. A 
good understanding provides the capability for solving a wide range of applied problems. 
This study of multiple regression methods parallels the study of simple regression. The first 
step in model development is model specification, which includes the selection of model 
variables and the model form. Next, we study the least squares process, followed by an anal-
ysis of variability to identify the effects of each predictor variable. Then we study estimation, 
confidence intervals, and hypothesis testing. Computer applications are used extensively to 
indicate how the theory is applied to realistic problems. Your study of this material will be 
aided if you relate the ideas in this chapter to those presented in Chapter 11.

Model Specification

We begin with an application that illustrates the important task of regression model speci-
fication. Model specification includes selection of the exogenous variables and the func-
tional form of the model.
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 12.1 The Multiple Regression Model 455

Example 12.1 Process Manufacturing (Regression 
Model Specification)

The production manager for Flexible Circuits, Inc., has asked for your assistance in 
studying a manufacturing process. Flexible circuits are produced from a continuous 
roll of flexible resin material with a thin film of copper-conducting material bonded to 
its surface. Copper is bonded to the resin by passing the resin through a copper-based 
solution. The thickness of the copper is critical for high-quality circuits. Copper thick-
ness depends, in part, on the temperature of the copper solution, speed of the produc-
tion line, density of the solution, and thickness of the flexible resin material. To control 
the thickness of the bonded copper, the production manager needs to know the effect 
of each of these variables. You have been asked for assistance in developing a multiple 
regression model.

Solution Model development begins with a careful analysis of the problem context. 
The first step for this example would be an extended discussion with product design 
and manufacturing engineers so that you understand the process being modeled in 
detail. In some cases, you would study existing literature related to the process. The 
process must be understood and agreed to by the engineers and analysts before a 
useful model can be developed using multiple regression analysis. In this example 
the dependent variable, Y, is the copper thickness. Independent variables include 
temperature of the copper solution, X1; speed of the production line, X2; density of 
the solution, X3; and thickness of the flexible resin material, X4. These variables were 
identified as potential predictors of copper thickness, Y, by engineers and scientists that 
understand the technology of the plating process. Based on the study of the process, 
the resulting model specification is as follows:

Y = b0 + b1X1 + b2X2 + b3X3 + b4X4

In this linear model the bjs are constant linear coefficients of the independent 
variables Xj that indicate the conditional effect of each independent variable on 
the determination of the dependent variable, Y, in the population. Thus, the coef-
ficients bj are parameters in the linear regression model. A series of production 
runs would then be made to obtain measurements of various combinations of in-
dependent and dependent variables. (See the discussion of experimental design in 
Section 13.2.)

Example 12.2 Store Location (Model Specification)

The director of planning for a large retailer was dissatisfied with the company’s new-
store development experience. In the past 4 years 25% of new stores failed to obtain 
their projected sales within the 2-year trial period and were closed, with substantial 
economic losses. The director wanted to develop better criteria for choosing store loca-
tions and decided that the historical experience of successful and unsuccessful stores 
should be studied.

Solution Discussion with a consultant indicated that data from stores that met and 
that did not meet anticipated sales could be used to develop a multiple regression 
model. The consultant suggested that the second year’s sales should be used as the 
dependent variable, Y. A regression model would be used to predict second-year sales 
as a function of several independent variables that define the area surrounding the 
store. Stores would be located only where the predicted sales exceeded a minimum 
level. The model would also indicate the effect of various independent variables  
on sales.
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Model Objectives

The strategy for model specification is influenced by the model objectives. One objec-
tive is prediction of a dependent or outcome variable. Applications include predicting 
or forecasting sales, output, total consumption, total investment, and many other busi-
ness and economic performance criteria. A second objective is estimating the marginal 
effect of each independent variable. Economists and managers need to know how changes 
of independent variables, Xj, where j = 1, c, K, change performance measures, Y. For 
example, consider the following:

 1. How do sales change as a result of a price increase and advertising expenditures?
 2. How does output change when the amounts of labor and capital are changed?
 3. Does infant mortality become lower when health care expenditures and local sanita-

tion are increased?

After considerable discussion with people in the company, the consultant recom-
mended the following independent variables:

1. X1 = size of store
2. X2 = traffic volume on highway in front of store
3. X3 = stand@alone store versus shopping mall location
4. X4 = location of competing store within 1>4 mile
5. X5 = per capita income of population within 5 miles
6. X6 = total number of people within 5 miles
7. X7 = per capita income of population within 10 miles
8. X8 = total number of people within 10 miles

Multiple regression was used to obtain estimates of the coefficients of the sales-
prediction model from data collected for all stores opened during the past 8 years. The 
data set included both those stores that were still operating and those that were closed. 
A model was developed that could be used to predict second-year sales. This estimated 
equation included coefficient estimators, bj, for the model parameters, bj. To apply the 
estimated equation

yni = b0 + a
8

j=1
bjxji

measurements of the independent variables were collected for each proposed new 
store location and the predicted sales were computed for that location. A predicted 
sales level was used, along with the judgment of marketing analysts and a committee 
of successful store managers, as input to the store location decision process.

Regression Objectives
Multiple regression provides two important results:

1.  An estimated linear equation that predicts the dependent variable, Y, as a 
function of K observed independent variables, Xj, where j = 1, c, K:

yni = b0 + b1x1i + b2x2i + g + bKxKi

 where i = 1, c , n observations. The predicted value, yni, depends on the 
effect of the independent variables individually and their effect in combi-
nation with the other independent variables. Thus, we are interested in 
the combined effect of a particular combination of predictor variables.
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 12.1 The Multiple Regression Model 457

Marginal change is more difficult to estimate because the independent variables are 
related not only to the dependent variables but also to each other. If two or more inde-
pendent variables change in a direct linear relationship with each other, it is difficult to 
determine the individual effect of each independent variable on the dependent variable.

Consider in detail the model in Example 12.2. The coefficient of x5 indicates the 
change in sales for each unit change in the per capita income of the population within 
5 miles, whereas that of x7 indicates the sales change for change in per capita income of 
the population within 10 miles. It is, of course, likely that the variables x5 and x7 are cor-
related. Thus, to the extent that these variables both change at the same time, it is diffi-
cult to determine the contribution of each variable to change in store sales revenue. This 
correlation between independent variables introduces a complexity to the model. It is 
important to understand that the model predicts store sales revenue using the particular 
combination of variables contained in the model. The effect of a predictor variable is 
the effect of that variable when combined with the other variables. Thus, in general, the 
coefficient of a variable does not provide an indication of that variable’s effect under all 
conditions. These complexities are explored further as we develop the multiple regres-
sion model.

Model Development

When applying multiple regression, we construct a model to explain variability in the de-
pendent variable. In order to do this, we want to include the simultaneous and individual 
influences of several independent variables. For example, suppose that we wanted to de-
velop a model that would predict the annual profit margin for savings and loan associa-
tions using data collected over a period of years. An initial model specification indicated 
that the annual profit margin was related to the net revenue per deposit dollar and the 
number of savings and loan offices. The net annual revenue is expected to increase the an-
nual profit margin, and the number of savings and loan offices is anticipated to decrease 
the annual profit margin because of increased competition. This would lead us to specify 
a population regression model:

Y = b0 + b1X1 + b2X2 + e

where

 Y = annual profit margin
 X1 = net annual revenue per deposit dollar
 X2 = number of savings and loan offices for that year

Table 12.1 and the data file named Savings and Loan contain 25 observations by year 
of these variables. These data will be used to develop a linear model that predicts annual 
profit margin as a function of revenue per deposit dollar and number of offices (Spellman 
1978).

But before we can estimate the model, we need to develop and understand the mul-
tiple regression procedure. To begin, let us consider the general multiple regression 

2. The marginal change in the dependent variable, Y, that is related to 
changes in the independent variables—estimated by the coefficients, bj. 
In multiple regression these coefficients depend on what other variables 
are included in the model. The coefficient bj estimates the change in Y, 
given a unit change in Xj, while controlling for the simultaneous effect of 
the other independent variables.

In some problems both results are equally important. However, usually 
one will predominate (e.g., prediction of store sales, Y, in the store location 
example).
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458 Chapter 12 Multiple Regression

model and note the differences from the simple regression model. The multiple regression  
model is

yi = b0 + b1x1i + b2x2i + g + bKxKi + ei

where ei is the random error term with a mean of 0 and a variance of s2, and the bj terms 
are the coefficients, or marginal effects, of the independent, or exogenous variables, Xj, 
where j = 1, c, K, given the effects of the other independent variables. The i terms indi-
cate the observations with i = 1, c, n. We use lowercase letters xji to denote specific val-
ues of variable Xj at observation i. We assume that the random errors ei are independent 
of the variables Xj and of each other to ensure proper estimates of the coefficients and 
their variances. In Chapter 13 we indicate the effect of relaxing these assumptions.

The sample estimated model is

yi = b0 + b1x1i + b2x2i + g + bKxKi + ei

where ei is the residual or difference between the observed value of Y and the estimated 
value of Y obtained by using the estimated coefficients, bj, where j = 1, c, K. The re-
gression procedure obtains simultaneous estimates, bj, of the population model coeffi-
cients, bj, using the least squares procedure.

In our savings and loan associations example, the population model for individual 
data points is as follows:

yi = b0 + b1x1i + b2x2i + ei

This reduced model with only two predictor variables provides the opportunity for de-
veloping additional insights into the regression procedure. The regression function can be 
depicted graphically in three dimensions, as shown in Figure 12.1. The regression func-
tion is shown as a plane whose Y values are a function of the independent variable values 
of X1 and X2. For each possible pair, x1i, x2i, the expected value of the dependent variable, 
Y, is on the plane. Figure 12.2 specifically illustrates the savings and loan example. An 
increase in X1 leads to an increase in the expected value of Y, conditional on the effect of 
X2. Similarly, an increase in X2 leads to a decrease in the expected value of Y, conditional 
on the effect of X1.

To complete our model, we add an error term defined as e. This error term recognizes 
that no postulated relationship will hold exactly and that there are likely to be additional 
variables that also affect the observed value of Y. Thus, in the application setting we observe 

Table 12.1 Savings and Loan Associations Operating Data

 
Year

 Revenue  
per Dollar

Number of 
 Offices

 Profit 
Margin

 
Year

Revenue per 
 Dollar

Number of 
 Offices

 Profit 
Margin

1 3.92 7,298 0.75 14 3.78 6,672 0.84

2 3.61 6,855 0.71 15 3.82 6,890 0.79

3 3.32 6,636 0.66 16 3.97 7,115 0.7

4 3.07 6,506 0.61 17 4.07 7,327 0.68

5 3.06 6,450 0.7 18 4.25 7,546 0.72

6 3.11 6,402 0.72 19 4.41 7,931 0.55

7 3.21 6,368 0.77 20 4.49 8,097 0.63

8 3.26 6,340 0.74 21 4.70 8,468 0.56

9 3.42 6,349 0.9 22 4.58 8,717 0.41

10 3.42 6,352 0.82 23 4.69 8,991 0.51

11 3.45 6,361 0.75 24 4.71 9,179 0.47

12 3.58 6,369 0.77 25 4.78 9,318 0.32

13 3.66 6,546 0.78
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the expected value of the dependent variable, Y—as depicted by the plane in Figure 12.2—
plus a random error term, e, that represents the portion of Y not included in the expected 
value. As a result, the data model has the form

yi = b0 + b1x1i + b2x2i + g + bKxKi + ei

Figure 12.1 The Plane Is the 
Expected Value of Y as a Function 
of X1 and X2

Figure 12.2 Comparison of the 
Observed and Expected Values of Y as a 
Function of Two Independent Variables

X1

X2

Y

X1

X2

Y

yi

ei

Eyi

The Population Multiple Regression Model
The population multiple regression model defines the relationship between 
a dependent, or endogenous variable, Y, and a set of independent, or exog-
enous, variables, Xj, where j = 1, c, K. The xji terms are assumed to be fixed 
numbers; Y is a random variable with yi defined for each observation, i, where 
i = 1, c, n and n is the number of observations. The model is defined as

 yi = b0 + b1x1i + b2x2i + g + bKxKi + ei (12.1)

where the bj terms are constant coefficients and the instances of ei are random 
variables with a mean of 0 and a variance of s2.

For the savings and loan example, with two independent variables, the population 
regression model is as follows:

yi = b0 + b1x1i + b2x2i + ei

Given particular values of the net percentage revenue, x1i, and the number of savings and 
loan offices, x2i, the observed profit margin, yi, is the sum of two parts: the expected value, 
b0 + b1x1i + b2x2i, and the random error term, ei. The random error term can be regarded 
as the combination of the effects of numerous other unidentified factors that affect profit 
margins. Figure 12.2 illustrates the model, with the plane indicating the expected value 
for various combinations of the independent variables and with the ei, shown as the devi-
ation between the expected value, and the observed value of Y, marked by a large dot, for 
a particular data point. In general, the observed values of Y will not lie on the plane but 
instead will be above or below the plane because of the positive or negative error terms, ei.

Simple regression, developed in the previous chapter, is merely a special case of mul-
tiple regression with only one predictor variable, and, hence, the plane is reduced to a 
line. Thus, the theory and analysis developed for simple regression also apply to multiple 
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460 Chapter 12 Multiple Regression

regression. However, there are some additional interpretations that we will develop in 
our study of multiple regression. One of the important interpretations is illustrated in the 
following discussion of three-dimensional graphing.

Three-Dimensional Graphing

Your understanding of the multiple regression procedure might be helped by considering 
a simplified graphical image. Look at the corner of the room in which you are sitting. The 
lines formed by the two walls and the floor represent the axes for two independent vari-
ables, X1 and X2. The corner between the two walls is the axis for the dependent variable, Y. 
To estimate a regression line, we collect sets of points 1x1i, x2i, and yi2.

Now, picture these points plotted in your room using the wall and floor corners as the 
three axes. With these points hanging in your room, we find a plane in space that comes 
close to all of them. This plane is the geometric form of the least squares equation. With 
these points in space we now maneuver a plane up and down and rotate it in two direc-
tions; all these shifts are done simultaneously until we have a plane that is “close” to all 
the points. Recall that we did this with a straight line in two dimensions in Chapter 11 to 
obtain the equation

yn = b0 + b1x

Then, we extend that idea to three dimensions to obtain the equation

yn = b0 + b1x1 + b2x2

This process is, of course, more complicated compared to simple regression. But real prob-
lems are complicated, and regression provides a way to better analyze the complexity of these 
problems. We want to know how Y changes with changes in X1. However, these changes are, 
in turn, influenced by the way X2 changes. And if X1 and X2 have a fixed relationship with 
each other, we cannot tell how much each variable contributes to changes in Y.

Geometric interpretations of multiple regression become increasingly complex as the 
number of independent variables increases. However, the analogy to simple regression is 
extremely useful. We estimate the coefficients by minimizing the sum of squared devia-
tions in the Y dimension about a linear function of the independent variables. In simple 
regression the function is a straight line on a two-dimensional graph. With two indepen-
dent variables the function is a plane in three-dimensional space. Beyond two indepen-
dent variables we have various complex hyperplanes that are impossible to visualize.

EXERCISES

Basic Exercises
 12.1 Given the estimated linear model

yn = 10 + 3x1 + 2x2 + 4x3

a. Compute yn  when x1 = 20, x2 = 11, and x3 = 10.
b. Compute yn  when x1 = 15, x2 = 14, and x3 = 20.
c. Compute yn  when x1 = 35, x2 = 19, and x3 = 25.
d. Compute yn when x1 = 10, x2 = 17, and x3 = 30.

 12.2 Given the estimated linear model

yn = 10 + 5x1 + 4x2 + 2x3

a. Compute yn  when x1 = 20, x2 = 11, and x3 = 10.
b. Compute yn  when x1 = 15, x2 = 14, and x3 = 20.
c. Compute yn  when x1 = 35, x2 = 19, and x3 = 25.
d. Compute yn when x1 = 10, x2 = 17, and x3 = 30.

 12.3 Given the estimated linear model

yn = 10 + 2x1 + 12x2 + 8x3

a. Compute yn  when x1 = 20, x2 = 11, x3 = 10.
b. Compute yn  when x1 = 15, x2 = 24, x3 = 20.
c. Compute yn  when x1 = 20, x2 = 19, x3 = 25.
d. Compute yn when x1 = 10, x2 = 9, x3 = 30.

 12.4 Given the following estimated linear model

yn = 10 + 2x1 + 12x2 + 8x3

a. What is the change in yn  when x1 increases 
by 4?

b.  What is the change in yn  when x3 increases 
by 1?

c. What is the change in yn when x2 increases by 2?
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 12.5 Given the following estimated linear model

yn = 10 - 2x1 - 14x2 + 6x3

a. What is the change in yn  when x1 increases by 4?
b. What is the change in yn  when x3 decreases by 1?
c. What is the change in yn when x2 decreases by 2?

Application Exercises
 12.6 An aircraft company wanted to predict the number of 

worker-hours necessary to finish the design of a new 
plane. Relevant explanatory variables were thought to 
be the plane’s top speed, its weight, and the number of 
parts it had in common with other models built by the 
company. A sample of 27 of the company’s planes was 
taken, and the following model was estimated:

yi = b0 + b1x1i + b2x2i + b3x3i + ei

  where

 yi = design effort, in millions of worker-hours
x1i = plane’s top speed, in miles per hour
x2i = plane’s weight, in tons
x3i =  percentage number of parts in common with 

other models

  The estimated regression coefficients were as follows:

b0 = 2 b1 = 0.661 b2 = 0.065 b3 = -0.018

  Interpret these estimates.
 12.7 In a study of the influence of financial institutions on 

bond interest rates in Germany, quarterly data over 
a period of 12 years were analyzed. The postulated 
model was

yi = b0 + b1x1i + b2x2i + ei

  where

 yi =  change over the quarter in the bond interest 
rates

x1i =  change over the quarter in bond purchases 
by financial institutions

x2i =  change over the quarter in bond sales by 
financial institutions

  The estimated regression coefficients were as follows:

b1 = 0.057 b2 = -0.065

  Interpret these estimates.
 12.8 The following model was fitted to a sample of 30 fami-

lies in order to explain household milk consumption:

yi = b0 + b1x1i + b2x2i + ei

  where

 yi = milk consumption, in quarts per week
x1i = weekly income, in hundreds of dollars
x2i = family size

  The least squares estimates of the regression param-
eters were as follows:

b0 = -0.025 b1 = 0.052 b2 = 1.14

a. Interpret the estimates b1 and b2.
b. Is it possible to provide a meaningful interpretation 

of the estimate b0?

 12.9 The following model was fitted to a sample of 25 stu-
dents using data obtained at the end of their fresh-
man year in college. The aim was to explain students’ 
weight gains:

yi = b0 + b1x1i + b2x2i + b3x3iei

  where

 yi =  weight gained, in pounds, during freshman 
year

x1i = average number of meals eaten per week
x2i =  average number of hours of exercise per 

week
x3i = average number of beers consumed per week

  The least squares estimates of the regression param-
eters were as follows:

b0 = 7.35 b1 = 0.653 b2 = -1.345 b3 = 0.613

a. Interpret the estimates b1, b2, and b3.
b. Is it possible to provide a meaningful interpretation 

of the estimate b0?

12.2 ESTIMATION OF COEFFICIENTS

Multiple regression coefficients are computed using estimators obtained by the least 
squares procedure. This least squares procedure is similar to that presented in Chapter 11 
for simple regression. However, the estimators are complicated by the relationships 
 between the independent Xj variables that occur simultaneously with the relation-
ships between the independent and dependent variables. For example, if two inde-
pendent variables increase or decrease linearly with each other—a positive or negative 
 correlation—while at the same time there are increases or decreases in the dependent 
variable, we cannot identify the unique effect of each independent variable to the 
change in the dependent variable. As a result, we will find that the estimated regression 
coefficients are less reliable if there are high correlations between two or more inde-
pendent variables. The estimates of coefficients and their variances are always obtained 
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462 Chapter 12 Multiple Regression

using a computer. However, we will spend considerable effort studying the algebra and 
computational forms in least squares regression. This effort will provide you with the 
background to understand the procedure and to determine how different data patterns 
influence the results. We begin with the standard assumptions for the multiple regres-
sion model.

Standard Multiple Regression Assumptions
The population multiple regression model is

 yi = b0 + b1x1i + b2x2i + g + bKxKi + ei

and we assume that n sets of observations are available. The following 
 standard assumptions are made for the model:

1. The xji terms are fixed numbers, or they are realizations of random 
 variables, Xj, that are independent of the error terms, ei. In the latter case, 
inference is carried out conditionally on the observed values of the xjis.

2. The expected value of the random variable Y is a linear function of the 
independent Xj variables.

3. The error terms are normally distributed random variables with a mean 
of 0 and the same variance, s2. The latter is called homoscedasticity, or 
uniform variance.

E3ei4 = 0  and  E3e2
i 4 = s2 for 1 i = 1, c, n2

4. The random error terms, ei, are not correlated with one another, so that

E3eiel4 = 0 for all i ? l

5. It is not possible to find a set of nonzero numbers, c1, c, cK, such that

c1x1i + c2x2i + g + cKxKi = 0

This is the property of no direct linear relationship between the Xj variables.

The first four assumptions are essentially the same as those made for simple regres-
sion. The error terms in assumption 3 are assumed to be normally distributed for statistical 
inference. But we will see that just as with simple regression, the central limit theorem al-
lows us to relax that assumption if the sample size is large enough. Assumption 5 excludes 
certain cases in which there are linear relationships between the predictor variables. For 
example, suppose we are interested in explaining the variability in rates charged for ship-
ping corn. One obvious explanatory variable would be the distance the corn is shipped. 
Distance could be measured in several different units, such as miles or kilometers. But it 
would not make sense to use both distance in miles and distance in kilometers as predic-
tor variables. These two measures are linear functions of each other and would not satisfy 
assumption 5. In addition, it would be foolish to try to assess their separate effects. As we 
shall see, the equations that compute the coefficient estimates and the computer programs 
will not work if assumption 5 is violated. In most cases, proper model specification will 
avoid violating assumption 5.

Least Squares Procedure

The least squares procedure for multiple regression computes the estimated coefficients 
so as to minimize the sum of the residuals squared. Recall that the residual is defined as

ei = yi - yni
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where yi is the observed value of Y and yni is the value of Y predicted from the regression. 
Formally, we minimize SSE:

 SSE = a
n

i=1
e2

i

 = a
n

i=1
1yi - yni22

 = a
n

i=1
1yi - 1b0 + b1x1i + g + bKxKi222

This minimization is the process of finding a plane that best represents a set of points in 
space, as we considered in our discussion of three-dimensional graphing. To carry out 
the process formally, we use partial derivatives to develop a set of simultaneous normal 
equations that are then solved to obtain the coefficient estimators. For those with a good 
understanding of differential calculus, the chapter appendix presents some of the details 
of the process. However, one can obtain great insights by realizing that we want a linear 
equation that best represents the observed data, and this is accomplished by minimizing 
the squared deviations about the estimated regression equation. Fortunately, for the ap-
plications studied in this book, the complex computations are always performed using a 
statistical computer package such as Minitab, SAS, or SPSS. Our objective here is to un-
derstand how to interpret the regression results and use them to solve problems. We will 
do this by examining some of the intermediate algebraic results to help understand the 
effects of various data patterns on the coefficient estimators.

Least Squares Estimation of the Sample  
Multiple Regression
We begin with a sample of n observations denoted as x1i, x2i, c, xKi, yi, where 
i = 1, c , n, measured for a process whose population multiple regression 
model is as follows:

yi = b0 + b1x1i + b2x2i + g + bKxKi + ei

The least squares estimates of the coefficients b1, b2, c, bK, are the values 
b0, b1, c , bK for which the sum of the squared errors

 SSE = a
n

i=1
1yi - b0 - b1x1i - b2x2i - g - bKxKi22 (12.2)

is a minimum.
The resulting equation

 yni = b0 + b1x1i + b2x2i + g + bKxKi (12.3)

is the sample multiple regression of Y on X1, X2, c, XK.

Let us consider again the regression model with only two predictor variables.

yni = b0 + b1x1i + b2x2i

The coefficient estimators are computed using the following equations:

 b1 =
sy1rx1y - rx1x2

rx2y2
sx1
11 - r2

x1x2
2  (12.4)
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In the equations for the coefficient estimators, we see that the slope coefficient estimate, 
b1, not only depends on the correlation between Y and X1 but also is affected by the corre-
lation between X1 and X2 and the correlation between X2 and Y. If the correlation between 
X1 and X2 is equal to 0, then the coefficient estimators, b1 and b2, will be the same as the 
coefficient estimator for simple regression—we should note that this hardly ever happens 
in business and economic analysis. Conversely, if the correlation between the independent 
variables is equal to 1, the coefficient estimators will be undefined, but this will result only 
from poor model specification and will violate multiple regression assumption 5. If the 
independent variables are perfectly correlated, then they both experience simultaneous 
relative changes. We see that in that case it is not possible to tell which variable predicts 
the change in Y. In Example 12.3 we see the effect of the correlations between independent 
variables by considering the savings and loan association problem, whose data are shown 
in Table 12.1.

 b2 =
sy1rx2y - rx1x2

rx1y2
sx2
11 - r2

x1x2
2  (12.5)

 b0 = y - b1x1 - b2x2 (12.6)

where

rx1y is the sample correlation between X1 and Y
rx2y is the sample correlation between X2 and Y
rx1x2

 is the sample correlation between X1 and X2
sx1

 is the sample standard deviation for X1
sx2

 is the sample standard deviation for X2
sy is the sample standard deviation for Y

Example 12.3 Profit Margins of Savings  
and Loan Associations (Regression  
Coefficient Estimation)

The director of the savings and loan association has asked you to compute the coeffi-
cients for variables that predict the percent profit margin.

Solution As a first step we develop a multiple regression model specification that 
predicts profit margin as a linear function of the net revenue per deposit dollar and the 
number of offices. Using the data in Table 12.1 that are stored in the Savings and Loan 
data file, we have estimated a multiple regression model, as seen in the Minitab and 
Excel outputs in Figure 12.3.

The estimated coefficients are identified in the computer output. We see that 
each unit increase in net revenue per deposit dollar, X1, results in a 0.237 increase 
in profit margin—if the other variable does not change—and a unit increase in the 
number of offices decreases profit margin by 0.000249. Now consider the two simple 
regression models in Figures 12.4 and 12.5 with Y regressed on each independent 
variable by itself. First, consider Y regressed on revenue, X1, in Figure 12.4. In this 
simple regression the coefficient for X1 is -0.169, which is clearly different from 
+0.237 in multiple regression. We see that the correlation between X1 and  X2 is 
0.941. This large correlation has a major impact on the coefficient of X1 in the mul-
tiple  regression equation.



 12.2 Estimation of Coefficients 465

Figure 12.3 Regression Equation for Savings and Loan Association Profit 
(Minitab and Excel Output)

Regression Analysis: Y profit versus X1 revenue, X2 offices

The regression equation is
Y profit = 1.56 + 0.237 X1 revenue - 0.000249 X2 offices

Predictor
Constant
X1 revenue
X2 offices

Coef
1.56450
0.23720

-0.00024908

SE Coef
0.07940
0.05556

0.00003205

T
19.70
4.27
-7.77

P
0.000
0.000
0.000

S = 0.0533022 R-Sq = 86.5% R-Sq(adj) = 85.3%

Analysis of Variance

Source
Regression
Residual Error
Total

DF
2
22
24

SS
0.40151
0.06250
0.46402

MS
0.20076
0.00284

F
70.66

P
0.000

Regression
coefficients
b0, b1, b2

Regression coefficients
b0, b1, b2

SUMMARY OUTPUT

Multiple R
R Square
Adjusted R Square
Standard Error
Observations

ANOVA

Regression
Residual
Total

Intercept
X1 revenue
X2 offices

0.930212915
0.865296068
0.853050256
0.053302217

25

df

Coefficients Standard Errors t Stat P-value Lower 95% Upper 95%

SS MS F Significance F
2

22

24

1.564496771
0.237197475

–0.000249079

0.079395981
0.055559366
3.20485E-05

19.70498685
4.269261695
–7.771949195

1.81733E-15
0.000312567
9.50879E-08

1.399839407
0.121974278

–0.000315544

1.72915414
0.35242067

–0.00018261

0.40151122
0.06250478

0.20075561 70.66057082 2.64962E-10
0.002841126

0.464016

Regression Statistics

Next, consider the regression of Y on X2 alone in Figure 12.5. In this simple re-
gression the slope coefficient for number of offices, X2, is -0.000120, in contrast to 
-0.000249 for the multiple regression coefficient. This change in coefficients, while not 
quite as dramatic compared to the coefficient for X1, also results from the high correla-
tion between the independent variables.

The correlations between the three variables are as follows:

Y PROFIT X1 REVENUE

X1 revenue -0.704

X2 offices -0.868 0.941

We see that the correlation between X1 and X2 is 0.941. Thus, the two variables 
tend to move together, and it is not surprising that the multiple regression coefficients 
are different from the simple regression coefficients.
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Figure 12.4 Savings and Loan Profit Regressed on Revenue

Regression Analysis: Y profit versus X1 revenue

The regression equation is
Y profit = 1.33 – 0.169 X1 revenue

Predictor
Constant
X1 revenue

Coef
1.3262

-0.16913

SE Coef
0.1386
0.03559

T
9.57
-4.75

P
0.000
0.000

S = 0.100891 R-Sq = 49.5% R-Sq(adj) = 47.4%

Analysis of Variance

Source
Regression
Residual Error
Total

DF
1

23
24

SS
0.22990
0.23412
0.46402

MS
0.22990
0.01018

F
22.59

P
0.000

Regression
coefficient b1

Figure 12.5 Savings and Loan Profit Regressed on Number of Offices

Regression Analysis: Y profit versus X2 revenue

The regression equation is
Y profit = 1.55 – 0.000120 X2 offices

Predictor
Constant
X2 offices

Coef
1.5460

-0.00012033

SE Coef
0.1048

0.00001434

T
14.75
-8.39

P
0.000
0.000

S = 0.0704917 R-Sq = 75.4% R-Sq(adj) = 74.3%

Analysis of Variance

Source
Regression
Residual Error
Total

DF
1

23
24

SS
0.34973
0.11429
0.46402

MS
0.34973
0.00497

F
70.38

P
0.000

Regression
coefficient b2

We should note that the multiple regression coefficients are conditional coefficients; that 
is, the estimated coefficient b1 depends on the other independent variables included in the 
model. This will always be the case in multiple regression unless two independent vari-
ables have a sample correlation of zero—a very unlikely event.

These relationships can also be studied by using a “matrix plot” from Minitab, 
as shown in Figure 12.6. Matrix plots are not available in Excel. Note that the simple 
relationship between Y and X2 is clearly linear, whereas the simple relationship be-
tween Y and X1 is somewhat curvilinear. This nonlinear relationship between X1 and 
Y explains in part why the coefficient of X1 changed so dramatically from simple to 
multiple regression. We see from this example that correlations between independent 
variables can have a major influence on the estimated coefficients. Thus, if one has a 
choice, highly correlated independent variables should be avoided. But in many cases 
we do not have that choice. Regression coefficient estimates are always conditional on 
the other predictor variables in the model. In this example, profit margin increases as 
a function of net revenue per deposit dollar. However, the simultaneous increase in 
number of offices—which reduced profit—would hide the profit increase if a simple 
regression analysis were used. Thus, proper model specification—that is, choice of pre-
dictor variables—is very important. Model specification requires an understanding of 
the problem context and appropriate theory.
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Figure 12.6

Matrix Plots for 
Savings and Loan 
Variables

EXERCISES

Visit www.MyStatLab.com or www.pearsonhighered
.com/newbold to access the data files.

Basic Exercise
 12.10 Compute the coefficients b1 and b2 for the regression 

model

yni = b0 + b1x1i + b2x2i

  given the following summary statistics.

a. rx1y = 0.60, rx2y = 0.70, rx1x2
= 0.50,

  sx1
= 200, sx2

= 100, sy = 400
b. rx1y = -0.60, rx2y = 0.70, rx1x2

= -0.50,
  sx1

= 200, sx2
= 100, sy = 400

c. rx1y = 0.40, rx2y = 0.450, rx1x2
= 0.80,

  sx1
= 200, sx2

= 100, sy = 400
d. rx1y = 0.60, rx2y = -0.50, rx1x2

= -0.60,
  sx1

= 200, sx2
= 100, sy = 400

Application Exercises
 12.11 Consider the following estimated linear regression 

equations:

Y = a0 + a1X1  Y = b0 + b1X1 + b2X2

a. Show in detail the coefficient estimators for a1 and 
b1 when the correlation between X1 and X2 is equal 
to 0.

b. Show in detail the coefficient estimators for a1 
and b1 when the correlation between X1 and X2 is 
equal to 1.

The following exercises require the use of a computer.

 12.12 Amalgamated Power, Inc., has asked you to es-
timate a regression equation to determine the 

effect of various predictor variables on the demand for 
electricity sales. You will prepare a series of regression 
estimates and discuss the results using the quarterly 
data for electrical sales during the past 17 years in the 
data file Power Demand.

a. Estimate a regression equation with electricity 
sales as the dependent variable, using the number 
of customers and the price as predictor variables. 
Interpret the coefficients.

b. Estimate a regression equation (electricity sales) 
using only number of customers as a predictor 
variable. Interpret the coefficient and compare the 
result to the result from part a.

c. Estimate a regression equation (electricity sales) 
using the price and degree days as predictor vari-
ables. Interpret the coefficients. Compare the coef-
ficient for price with that obtained in part a.

d. Estimate a regression equation (electricity sales) us-
ing disposable income and degree days as predictor 
variables. Interpret the coefficients.

 12.13 Transportation Research, Inc., has asked you to 
prepare some multiple regression equations to 

 estimate the effect of variables on fuel economy. The data 
for this study are contained in the data file  Motors, and 
the  dependent variable is miles per  gallon—milpgal—as 
established by the Department of Transportation 
certification.

a. Prepare a regression equation that uses vehicle 
horsepower—horsepower—and vehicle weight—
weight—as independent variables. Interpret the 
coefficients.

b. Prepare a second regression equation that adds the 
number of cylinders—cylinder—as an independent 
variable to the equation from part a.  Interpret the 
coefficients.

c. Prepare a regression equation that uses number of 
cylinders and vehicle weight as independent vari-
ables. Interpret the coefficients and compare the 
results with those from parts a and b.

d. Prepare a regression equation that uses vehicle 
horsepower, vehicle weight, and price as predictor 
variables. Interpret the coefficients.

e. Write a short report that summarizes your results.

www.MyStatLab.com
www.pearsonhighered.com/newbold
www.pearsonhighered.com/newbold
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12.3  EXPLANATORY POWER OF A MULTIPLE  
REGRESSION EQUATION

Multiple regression uses independent variables to explain the behavior of the dependent 
variable. We find that variability in the dependent variable can, in part, be explained by 
the linear function of the independent variables. In this section we develop a measure of 
the proportion of the variability in the dependent variable that can be explained by the 
multiple regression model.

The estimated regression model from the sample is

yi = b0 + b1x1i + b2x2i + g + bKxKi + ei

Alternatively, we can write

yi = yni + ei

where

yni = b0 + b1x1i + b2x2i + g + bKxKi

is the predicted value of the dependent variable and the residual, ei, is the difference be-
tween the observed and the predicted values. Table 12.2 contains these quantities for the 
savings and loan example in the first three columns.

We can subtract the sample mean of the dependent variable from both sides, giving

 1yi - y2 = 1yni - y2 + ei

 = 1yni - y2 + 1yi - yni2
which can be stated as follows:

observed deviation from mean = predicted deviation from mean + residual

Then by squaring both sides and summing over the index, i, we have

 a
n

i=1
1yi - y22 = a

n

i=1
1yni - y + yi - yni22

 = a
n

i=1
1yni - y22 + a

n

i=1
e2

i

which is the sum-of-squares decomposition presented in Chapter 11:

SST = SSR + SSE

sum of squares total = sum of squares regression + sum of squares error

This simplified decomposition occurs because yi and yni are independent—yi includes e
and yni does not–and, thus,

a
n

i=1
1yni - y21yi - yni2 = 0

 12.14 Transportation Research, Inc., has asked you to 
prepare some multiple regression equations to 

estimate the effect of variables on vehicle horsepower. 
The data for this study are contained in the data file 
Motors, and the dependent variable is vehicle horse-
power—horsepower—as established by the Depart-
ment of Transportation certification.

a. Prepare a regression equation that uses vehicle 
weight—weight—and cubic inches of cylinder dis-
placement—displacement—as predictor variables. 
Interpret the coefficients.

b. Prepare a regression equation that uses vehicle 
weight, cylinder displacement, and number of 

 cylinders—cylinder—as predictor variables. Inter-
pret the coefficients and compare the results with 
those in part a.

c.  Prepare a regression equation that uses vehicle 
weight, cylinder displacement, and miles per gallon— 
milpgal—as predictor variables. Interpret the coeffi-
cients and compare the results with those in part a.

d. Prepare a regression equation that uses vehicle 
weight, cylinder displacement, miles per gallon, 
and price as predictor variables. Interpret the coef-
ficients and compare the results with those in part c.

e. Write a short report that presents the results of your 
analysis of this problem.
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Table 12.2
Actual Values, 
 Predicted Values,  
and Residuals for 
Savings and Loan 
Regression

 

yi yni ei = yi - yni yi - y yni - y

0.75 0.677   0.073   0.076   0.003
0.71 0.713 -0.003   0.036   0.039
0.66 0.699 -0.039 -0.014   0.025
0.61 0.672 -0.062 -0.064 -0.002
0.7 0.684   0.016   0.026   0.010
0.72 0.708   0.012   0.046   0.034
0.77 0.740   0.030   0.096   0.066
0.74 0.759 -0.019   0.066   0.085
0.9 0.794   0.106   0.226   0.120
0.82 0.794   0.026   0.146   0.120
0.75 0.798 -0.048   0.076   0.124
0.77 0.827 -0.057   0.096   0.153
0.78 0.802 -0.022   0.106   0.128
0.84 0.799   0.041   0.166   0.125
0.79 0.754   0.036   0.116   0.080
0.7 0.734 -0.034   0.026   0.060
0.68 0.705 -0.025   0.006   0.031
0.72 0.693   0.027   0.046   0.019
0.55 0.635 -0.085 -0.124 -0.039
0.63 0.613   0.017 -0.044 -0.061
0.56 0.570 -0.010 -0.114 -0.104
0.41 0.480 -0.070 -0.264 -0.194
0.51 0.437   0.073 -0.164 -0.237
0.47 0.395   0.075 -0.204 -0.279
0.32 0.377 -0.057 -0.354 -0.297
Sum of squares:   0.0625 (SSE)   0.4640 (SST)   0.4015 (SSR)

Sum-of-Squares Decomposition and the Coefficient  
of Determination
We begin with the multiple regression model fitted by least squares,

yi = b0 + b1x1i + b2x2i + g + bKxKi + ei = yni + ei

where the bj terms are the least squares estimates of the coefficients of the 
population regression model and the e terms are the residuals from the esti-
mated regression model.

The model variability can be partitioned into the components

 SST = SSR + SSE (12.7)

where these components are defined as follows:
Sum-of-Squares Total

  SST = a
n

i=1
1yi - y22  (12.8)

  = a
n

i=1
1yni - y22 + a

n

i=1
1yi - yni22 (12.9)

Sum-of-Squares Error

 SSE = a
n

i=1
1yi - yni22 = a

n

i=1
e2

i  (12.10)
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Estimation of Error Variance
Given the population multiple regression model

yi = b0 + b1x1i + b2x2i + g + bKxKi + ei

and the standard regression assumptions, let s2 denote the common variance 
of the error term, ei. Then an unbiased estimate of error variance is

 s2
e =

a
n

i=1
e2

i

n - K - 1
=

SSE
n - K - 1

 (12.13)

where K is the number of independent variables in the regression model. The 
square root of the variance, se, is also called the standard error of the estimate.

Sum-of-Squares Regression or Explained Sum of Squares

 SSR = a
n

i=1
1yni - y22 (12.11)

This decomposition can be interpreted as follows:

total sample variability = explained variability + unexplained variability

The coefficient of determination, R2, of the fitted regression is defined as the 
proportion of the total sample variability explained by the regression

 R2 =
SSR
SST

= 1 -
SSE
SST

 (12.12)

and it follows that

0 … R2 … 1

The sum of squared errors is also used to compute the estimation for the variance of 
population model errors, as shown in Equation 12.13. As with simple regression, the vari-
ance of population errors is used for multiple regression statistical inference.

At this point we can also compute the mean square regression as follows:

MSR =
SSR

K

We use MSR as a measure of the explained variability adjusted for the number of inde-
pendent variables.

The sample mean for the savings and loan profit dependent variable is y = 0.674, and 
we have used this value to compute the last two columns of Table 12.2. Using the data in 
Table 12.2 and the components, we can show that

SSE = 0.0625 SST = 0.4640 R2 = 0.87

From these results we find that for this sample 87% of the variability in the savings and loan 
association’s profit is explained by the linear relationships with net revenues and number 
of offices. Note that we could also compute the regression sum of squares from the identity

SSR = SST - SSE = 0.4640 - 0.0625 = 0.4015

We can also compute an estimate for the error variance s2 by using Equation 12.13:

s2
e =

a
n

i=1
e2

i

n - K - 1
=

SSE
n - K - 1

=
0.0625

25 - 1 - 2
= 0.00284
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The components of variability have associated degrees of freedom. The SST quantity 
has 1n - 12 degrees of freedom because the mean of Y is required for its computation. 
The SSR component has K degrees of freedom because K coefficients are required for its 
computation. Finally, the SSE component has 1n - K - 12 degrees of freedom because 
K coefficients and the mean are required for its computation. Note that in Figure 12.7 the 
output includes the degrees of freedom (DF) associated with each component.

We routinely use the coefficient of determination, R2, as a descriptive statistic to de-
scribe the strength of the linear relationship between the independent X variables and the 
dependent variable, Y. It is important to emphasize that R2 can be used only to compare 
regression models that have the same set of sample observations of yi, where i = 1, c, n. 
This result is seen from the equation form as follows:

R2 = 1 -
SSE
SST

Thus, we see that R2 can be large either because SSE is small—indicating that the observed
points are close to the predicted points—or because SST is large. We have seen that SSE and s2

e  
indicate the closeness of the observed points to the predicted points. With the same SST for two 
or more regression equations, R2 provides a comparable measure of the goodness of fit for the 
equations. This is the same result that was shown in the extended example in Section 11.4.

There is a potential problem with using R2 as an overall measure of the quality of a 
fitted equation. As additional independent variables are added to a multiple regression 
model, the explained sum of squares, SSR, will increase—in essentially all applied situa-
tions— even if the additional independent variable is not an important predictor variable. 
Thus, we might find that R2 has increased spuriously after one or more nonsignificant 
predictor variables have been added to the multiple regression model. In such a case, the 
increased value of R2 would be misleading. To avoid this problem, the adjusted coefficient 
of determination can be computed as shown in Equation 12.14.

Figure 12.7

Regression Output 
for the Savings and 
Loan Association 
Problem

Regression Analysis: Y profit versus X1 revenue, X2 offices

The regression equation is
Y profit = 1.56 + 0.237 X1 revenue - 0.000249 X2 offices

Predictor
Constant
X1 revenue
X2 offices

Coef
1.56450
0.23720

-0.00024908

SE Coef
0.07940
0.05556

0.00003205

T
19.70
4.27
-7.77

P
0.000
0.000
0.000

S = 0.0533022 R-Sq = 86.5% R-Sq(adj) = 85.3%

Analysis of Variance

Source
Regression
Residual Error
Total

DF
2
22
24

SS
0.40151
0.06250
0.46402

MS
0.20076
0.00284

F
70.66

P
0.000

Coefficients
b0, b1, b2

Source
X1 revenus
X2 offices

DF
1
1

Seq SS
0.22990
0.17161

Standard error
of the estimate se

Coefficient of
determination R2

Error variance
s2

e

MSR 5 SSR/K

SSR = 0.40151
SSE = 0.06250
SST = 0.46402

Number of independent
 X  Variables, K

Figure 12.7 presents the regression output from Minitab for the savings and loan asso-
ciation problem, with the various computed sums of squares indicated. These quantities 
are routinely computed by statistical computer packages, and the detail in Table 12.2 is 
included only to indicate how the sums of squares are computed. In all of the work that 
follows, we assume that the sums of squares are calculated by a computer package.

User
Highlight

User
Highlight

User
Highlight

User
Highlight



472 Chapter 12 Multiple Regression

Returning to our savings and loan example, we see that

n = 25 K = 2 SSE = 0.0625 SST = 0.4640

and, thus, the adjusted coefficient of determination is as follows:

R2 = 1 -
0.0625>22

0.4640>24
= 0.853

In this example the difference between R2 and R2 is not very large. However, if the regres-
sion model had contained a number of independent variables that were not important 
conditional predictors, then the difference would be substantial. Another measure of rela-
tionship in multiple regression is the coefficient of multiple correlation.

Adjusted Coefficient of Determination
The adjusted coefficient of determination, R2, is defined as follows:

 R2 = 1 -
SSE>1n - K - 12

SST>1n - 12  (12.14)

We use this measure to correct for the fact that nonrelevant independent vari-
ables will result in some small reduction in the error sum of squares. Thus, the 
adjusted R2 provides a better comparison between multiple regression models 
with different numbers of independent variables.

Coefficient of Multiple Correlation
The coefficient of multiple correlation is the correlation between the predicted 
value and the observed value of the dependent variable

 R = r1yn, y2 = 2R2 (12.15)

and is equal to the square root of the multiple coefficient of determination. We 
use R as another measure of the strength of the relationship between the de-
pendent variable and the independent variables. Thus, it is comparable to the 
correlation between Y and X in simple regression.

EXERCISES

Basic Exercises
 12.15 A regression analysis has produced the following 

analysis of variance table:

Analysis of Variance
Source DF SS MS

Regression 3 4,500

Residual error 26 500

a. Compute se and s2
e .

b. Compute SST.
c. Compute R2 and the adjusted coefficient of 

determination.

 12.16 A regression analysis has produced the following 
analysis of variance table:

Analysis of Variance
Source DF SS MS

Regression 2 7,000

Residual error 29 2,500

a. Compute se and s2
e .

b. Compute SST.

c. Compute R2 and the adjusted coefficient of 
determination.

 12.17 A regression analysis has produced the following 
analysis of variance table:

Analysis of Variance
Source DF SS MS

Regression 4 40,000

Residual error 45 10,000

a. Compute se and s2
e .

b. Compute SST.
c. Compute R2 and the adjusted coefficient of 

determination.

 12.18 A regression analysis has produced the following 
analysis of variance table:

Analysis of Variance
Source DF SS MS

Regression 5 80,000

Residual error 200 15,000
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a. Compute se and s2
e .

b. Compute SST.
c. Compute R2 and the adjusted coefficient of 

determination.

Application Exercises
 12.19 An aircraft company wanted to predict the number of 

worker-hours necessary to finish the design of a new 
plane. Relevant explanatory variables were thought to 
be the plane’s top speed, its weight, and the number of 
parts it had in common with other models built by the 
company. A sample of 27 of the company’s planes was 
taken, and the following model was estimated:

y = b0 + b1x1 + b2x2 + b3x3 + e

where
 y = design effort, in millions of worker-hours
x1 = plane’s top speed, in miles per hour
x2 = plane’s weight, in tons
x3 =  percentage of parts in common with other 

models

The estimated regression coefficients were as follows:

b1 = 0.661 b2 = 0.065 b3 = -0.018

  The total sum of squares and regression sum of 
squares were found to be as follows:

SST = 3.881 and SSR = 3.549

a. Compute and interpret the coefficient of 
determination.

b. Compute the error sum of squares.
c. Compute the adjusted coefficient of determination.
d. Compute and interpret the coefficient of multiple 

correlation.

 12.20 The following model was fitted to a sample of 30 fami-
lies in order to explain household milk consumption:

y = b0 + b1x1 + b2x2 + e

where
 y = milk consumption, in quarts per week
x1 = weekly income, in hundreds of dollars
x2 = family size

The least squares estimates of the regression pa-
rameters were as follows:

b0 = -0.025 b1 = 0.052 b2 = 1.14

  The total sum of squares and regression sum of 
squares were found to be as follows:

SST = 162.1 and SSR = 88.2

a. Compute and interpret the coefficient of 
determination.

b. Compute the adjusted coefficient of 
determination.

c. Compute and interpret the coefficient of multiple 
correlation.

 12.21 The following model was fitted to a sample of 25 stu-
dents using data obtained at the end of their fresh-
man year in college. The aim was to explain students’ 
weight gains:

y = b0 + b1x1 + b2x2 + b3x3 + e

where
 y =  weight gained, in pounds, during freshman year
x1 =  average number of meals eaten per week
x2 =  average number of hours of exercise per week
x3 =  average number of beers consumed per week

  The least squares estimates of the regression param-
eters were as follows:

b0 = 7.35 b1 = 0.653 b2 = -1.345 b3 = 0.613

  The regression sum of squares and error sum of 
squares were found to be as follows:

SSR = 79.2 and SSE = 45.9

a. Compute and interpret the coefficient of 
determination.

b. Compute the adjusted coefficient of 
determination.

c. Compute and interpret the coefficient of multiple 
correlation.

 12.22 Refer to the savings and loan association data given in 
Table 12.1.

a. Estimate, by least squares, the regression of profit 
margin on number of offices.

b. Estimate, by least squares, the regression of net 
revenues on number of offices.

c. Estimate, by least squares, the regression of profit 
margin on net revenues.

d. Estimate, by least squares, the regression of number 
of offices on net revenues.

12.4  CONFIDENCE INTERVALS AND HYPOTHESIS TESTS  
FOR INDIVIDUAL REGRESSION COEFFICIENTS

In Section 12.2 we developed and discussed the point estimators for the parameters of the 
multiple regression model:

yi = b0 + b1x1i + b2x2i + g + bKxKi + ei

Now, we will develop confidence intervals and tests of hypotheses for the estimated 
 regression coefficients. These confidence intervals and hypothesis tests depend on the 
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 variance of the coefficients and the probability distribution of the coefficients. In Section 11.5 
we showed that the simple regression coefficient is a linear function of the dependent vari-
able, Y. Multiple regression coefficients, denoted by bj, are also linear functions of the depen-
dent variable, Y, but the algebra is somewhat more complex and is not presented here. In 
the previous multiple  regression equation, we see that the dependent variable, Y, is a linear 
function of the X variables plus the random error, e. For a given set of X terms the function

b0 + b1x1i + b2x2i + g + bKxKi

is actually a constant. We also know from Chapters 4 and 5 that adding a constant to a ran-
dom variable e results in the random variable Y having the same probability distribution 
and variance as the original random variable e. As a result, the dependent variable, Y, has 
the same normal distribution and variance as the error term, e. Then it follows that the re-
gression coefficients, bj—which are linear functions of Y—also have a normal distribution, 
and their variance can be derived by using the linear relationship between the regression 
coefficients and the dependent variable. This computation would follow the same process 
as used for simple regression in Section 11.5, but the algebra is more complex.

Based on the linear relationship between the coefficients and Y, we know that the 
coefficient estimates are normally distributed if the model error, e, is normally distrib-
uted. Because of the central limit theorem, we generally find that the coefficient estimates 
are approximately normally distributed even if e is not normally distributed. Thus, the 
hypothesis tests and confidence intervals we develop are not seriously affected by depar-
tures from normality in the distribution of the error terms.

We can think of the error term, e, in the population regression model as including the 
combined influences on the dependent variable of a multitude of factors not included in 
the list of independent variables. These factors individually may not have an important 
influence, but in combination their effect can be important. The fact that the error term is 
made up of a large number of components whose effects are random provides an intuitive 
argument for assuming that the coefficient errors are also normally distributed.

As we have seen previously, the coefficient estimators, bj, are linear functions of Y, 
and the predicted value of Y is a linear function of the regression coefficient estimators. 
However, these relationships can sometimes cause interpretation problems. Thus, we will 
spend time gaining important insights into the variance computations. If we do not un-
derstand how the variances are computed, we will not be able to adequately understand 
hypothesis tests and confidence intervals.

The variance of a coefficient estimate is affected by the sample size, the spread of 
the X variables, the correlations between the independent variables, and the model er-
ror term. Thus, these correlations affect both confidence intervals and tests of hypotheses. 
Previously, we saw how the correlations between the independent variables influence 
the coefficient estimators. These correlations between independent variables also increase the 
variance of the coefficient estimators. An important conclusion is that the variance of 
the coefficient estimators, in addition to the coefficient estimators, is conditional on the entire 
set of independent variables in the regression model.

The previous discussion under three-dimensional graphing emphasized the complex ef-
fects of several variables on the coefficient variance. As the relationships between indepen-
dent variables become stronger, estimates of coefficients become more unstable—that is, they 
have higher variance. The following discussion provides a more formal discussion of these 
complexities. To obtain good coefficient estimates—those that are low in variance—you 
should seek a wide range for the independent variables, choose independent variables that 
are not strongly related to each other, and find a model that is close to all data points. The re-
ality of applied statistical work in business and economics is that we often must use data that 
are less than ideal, such as the data for the savings and loan example. But by knowing the 
effects discussed here, we can make good judgments about the applicability of our models.

To gain some understanding of the effect of independent variable correlations, we 
consider the variance estimators from the estimated multiple regression model with two 
predictor variables:

yni = b0 + b1x1i + b2x2i
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The coefficient variance estimators are

 s2
b1
=

s2
e1n - 12s2

x1
11 - r2

x1x2
2 (12.16)

 s2
b2
=

s2
e1n - 12s2

x2
11 - r2

x1x2
2 (12.17)

and the square roots of these variance estimators, sb1
 and sb2

, are called the coefficient stan-
dard errors.

The variance of the coefficient estimators increases directly with the distance of the 
points from the line, measured by s2

e , the estimated error variance. In addition, a wider 
spread of the independent variable values—measured by s2

x1
 or by s2

x2
—decreases the coef-

ficient variance. Recall that these results also apply for simple regression coefficient esti-
mators. We also see that the variance of the coefficient estimators increases with increases 
in the correlation between the independent variables in the model. As the correlation in-
creases between two independent variables, it becomes more difficult to separate the ef-
fect of the individual variables for predicting the dependent variables. As the number of 
independent variables in a model increases, the influences on the coefficient variance con-
tinue to be important, but the algebraic structure becomes very complex and is not pre-
sented here. The correlation effect leads to the result that coefficient variance estimators 
are conditional on the other independent variables in the model. Recall that the actual co-
efficient estimators are also conditional on the other independent variables in the model, 
again because of the effect of correlations between the independent variables.

The basis for inference about population regression coefficients is summarized next. 
We are typically more interested in the regression coefficients bj than in the constant or 
intercept b0. Thus, we concentrate on the former, noting that inference about the latter 
proceeds along similar lines.

Confidence Intervals

Confidence intervals for the bj can be derived by using Equation 12.19.

Basis for Inference about the Population Regression 
Parameters
Let the population regression model be as follows:

yi = b0 + b1x1i + b2x1i + g + bKxKi + ei

Let b0, b1, c, bK be the least squares estimates of the population parameters 
and sb0

, sb1
, c, sbK

 be the estimated standard deviations of the least squares 
estimators. Then, if the standard regression assumptions hold and if the error 
terms, ei, are normally distributed,

 tbj
=

bj - bj

sbj

 1 j = 1, 2, c, K2 (12.18)

is distributed as a Student’s t distribution with 1n - K - 12 degrees of freedom.

Confidence Intervals for Regression Coefficients
If the population regression errors, ei, are normally distributed and the stan-
dard regression assumptions hold, the 100(1 - a)% two-sided confidence inter-
vals for the regression coefficients, bj, are given by

 bj - tn-K-1, a>2sbj
6 bj 6 bj + tn-K-1, a>2sbj

 (12.19)
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where tn-K-1, a>2 is the number for which

P1tn-K-1 7 tn-K-1, a>22 = a2
and the random variable tn-K-1 follows a Student’s t distribution with 1n - K - 12 degrees of freedom.

Example 12.4 Developing the Savings and Loan 
Model (Confidence Interval Estimation)

We have been asked to determine confidence intervals for the coefficients of the sav-
ings and loan regression model developed in Example 12.3.

Solution The Minitab regression output for the savings and loan regression model is 
shown in Figure 12.8. The coefficient estimators and their standard deviations for the 
revenue, b1, and number of offices, b2, predictor variables are computed as follows:

b1 = 0.2372, sb1
= 0.0556; b2 = -0.000249 and sb2

= 0.00003205

Figure 12.8 Savings and Loan Regression: Minitab Output

Regression Analysis: Y profit versus X1 revenue, X2 offices

The regression equation is
Y profit = 1.56 + 0.237 X1 revenue - 0.000249 X2 offices

Predictor
Constant
X1 revenue
X2 offices

Coef
1.56450
0.23720

-0.00024908

SE Coef
0.07940
0.05556

0.00003205

T
19.70
4.27
-7.77

P
0.000
0.000
0.000

S = 0.0533022 R-Sq = 86.5% R-Sq(adj) = 85.3%

Analysis of Variance

Source
Regression
Residual Error
Total

DF
2
22
24

SS
0.40151
0.06250
0.46402

MS
0.20076
0.00284

F
70.66

P
0.000

Source

X1 revenue
X2 offices

DF Seq SS

1
1

0.22990
0.17161

b1

b2

sb1
tb1

tb2

sb2

Thus, we see that the standard deviation of the sampling distribution of the least 
squares estimator for b1 is estimated as 0.05556 and for b2 is estimated as 0.00003205.

To obtain the 99% confidence intervals for b1 and b2, we use the Student’s t value 
from Appendix Table 8.

tn-K-1, a>2 = t22, 0.005 = 2.819

Using these results, we find that the 99% coefficient confidence interval for b1 is

0.237 - 12.819210.055562 6 b1 6 0.237 + 12.819210.055562
or

0.080 6 b1 6 0.394
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Tests of Hypotheses

Tests of hypotheses for regression coefficients can be developed using the coefficient vari-
ance estimates. Of particular interest is the hypothesis test

H0 : bj = 0

which is frequently used to determine if a specific independent variable is conditionally 
important in a multiple regression model.

Thus, the 99% confidence interval for the expected increase in the savings and loan profit 
margin resulting from a one-unit increase in net revenue per dollar, given a fixed number 
of offices, runs from 0.080 to 0.394. The 99% coefficient confidence interval for b2 is

-0.000249 - 12.819210.00003202 6 b2 6 -0.000249 + 12.819210.00003202
or

-0.000339 6 b2 6 -0.000159

Therefore, we see that the 99% confidence interval for the expected decrease in the 
profit margin resulting from an increase of 1,000 offices, for a fixed level of net revenue 
per dollar, runs from 0.159 to 0.339.

Tests of Hypotheses for the Regression Coefficients
If the regression errors, ei, are normally distributed and the standard regression 
assumptions hold, then the following hypothesis tests have significance level a:

1. To test either null hypothesis

H0 : bj = b* or H0 : bj … b*

against the alternative

H1 : bj 7 b*

the decision rule is as follows:

 reject H0 if 
bj - b*

sbj

7 tn-K-1,a (12.20)

2. To test either null hypothesis

H0 : bj = b* or H0 : bj Ú b*

against the alternative

H1: bj 6 b*

the decision rule is as follows:

 reject H0 if 
bj - b*

sbj

6 - tn-K-1,a (12.21)

3. To test the null hypothesis

H0 : bj = b*

against the two-sided alternative

H1 : bj ? b*

the decision rule is as follows:

 reject H0 if 
bj - b*

sbj

7 tn-K-1,a>2 or 
bj - b*

sbj

6 - tn-K-1,a>2 (12.22)
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Many analysts argue that if we cannot reject the conditional hypothesis that the coef-
ficient is 0, then we must conclude that the variable should not be included in the regres-
sion model. The Student’s t statistic for this two-tailed test is typically computed in most 
regression programs and is printed next to the coefficient variance estimate; in addition, 
the p-value for the hypothesis test is typically included. These are shown in the Minitab 
output in Figure 12.8. Using the printed Student’s t statistic or the p-value, we can imme-
diately conclude whether or not a particular predictor variable is conditionally significant, 
given the other variables in the regression model.

There are clearly other procedures for deciding if an independent variable should be in-
cluded in a regression model. We see that the preceding selection procedure ignores Type 
II error—the population coefficient is not equal to 0, but we fail to reject the null hypothesis 
that it is equal to 0. This is a particular problem when a model based on economic or another 
theory that is carefully specified to include certain independent variables. Then, because of 
a large error, e, or correlations between independent variables, or both, we cannot reject the 
hypothesis that the coefficient is 0. In this case many analysts will include the independent 
variable in the model because the original model specification based on economic theory or 
experience is believed to dominate. This is a difficult issue and requires good judgment based 
on both statistical results and theory concerning the underlying relationship being modeled.

Example 12.5 Developing the Savings and Loan 
Model (Coefficient Hypothesis Tests)

We have been asked to determine if the coefficients in the savings and loan regression 
model are conditionally significant predictors of profit margin.

Solution The hypothesis test for this question will use the Minitab regression results 
shown in Figure 12.8. First, we wish to determine if the variable net revenue per dollar 
has a significant effect on increasing profit margin, conditional on or controlling for the 
effect of the variable number of offices. The null hypothesis is

H0 : b1 = 0

versus the alternative hypothesis

H1 : b1 7 0

The test can be performed by computing the Student’s t statistic associated with the 
coefficient, given H0:

tb1
=

b1 - b1

sb1

=
0.237 - 0
0.05556

= 4.27

From the Student’s t table, Appendix Table 8, we can determine that the critical value—
for a = 0.005– for the Student’s t statistic is as follows:

t22,0.005 = 2.819

Figure 12.8 also indicates that the p-value for the null hypothesis test

H0 : b1 = 0

versus the alternative hypothesis

H1 : b1 ? 0

is less than 0.005. Based on this evidence, we reject H0 and accept H1 and conclude that 
net revenue per dollar is a statistically significant predictor of increased profit margin for 
savings and loans, given that we have controlled for the effect of the number of offices.

Similarly, we can determine if the total number of offices has a significant effect on 
reducing profit margins. The null hypothesis is

H0 : b2 = 0



 12.4 Confidence Intervals and Hypothesis Tests for Individual Regression Coefficients  479

It is important to emphasize that both of the hypothesis tests are based on the particu-
lar set of variables included in the regression model. If, for example, additional predic-
tor variables were included, then these tests would no longer be valid. With additional 
variables in the model the coefficient estimates and their estimated standard deviations 
would be different, and, thus, the Student’s t statistics would also be different.

Note that in the Minitab regression output for this problem, shown in Figure 12.8, the 
Student’s t statistic for the null hypothesis—H0 : bj = 0—is computed as the ratio of the es-
timated coefficient divided by the estimated coefficient standard error—contained in the 
two columns to the left of the Student’s t. The probability, or p-value, for the two-tailed hy-
pothesis test—Hj : bj ? 0—is also displayed. Thus, an analyst can perform these hypothesis 
tests directly by examining the multiple regression output. The Student’s t and the p-value 
are computed in every modern statistical package. Most analysts routinely look for these 
test results as they examine regression output from a computer statistical package.

versus the alternative hypothesis

H1 : b2 6 0

The test can be performed by computing the Student’s t statistic associated with the 
coefficient, given H0:

tb2
=

b2 - b2

sb2

=
-0.000249 - 0

0.0000320
= -7.77

From Appendix Table 8 we find that the critical value for the Student’s t statistic is as follows:

t22, 0.005 = -2.819

Figure 12.8 also indicates that the p-value for the null hypothesis test

H0 : b2 = 0

versus the alternative hypothesis

H1 : b2 ? 0

is less than 0.005. Based on this evidence, we reject H0 and accept H1 and conclude that 
number of offices is a statistically significant predictor of lower profit margin for sav-
ings and loans, given that we have controlled for the effect of net revenue per dollar.

Example 12.6 Factors Affecting Property Tax Rate 
(Analysis of Regression Coefficients)

A group of city managers commissioned a study to determine the factors that influence 
urban property-tax rates for cities with populations between 100,000 and 200,000.

Solution Using a sample of 20 U.S. cities, the following regression model was estimated:

  yn = 1.79 + 0.000567x110.0001392 + 0.0183x210.00822 - 0.000191x310.0004462
 R2 = 0.71   n = 20

where

 y = effective property tax rate (actual levies divided by market value of the tax base)
x1 = number of housing units per square mile
x2 =  percentage of total city revenue represented by grants from state and federal 

governments
x3 = median per capita personal income, in dollars

The numbers in parentheses under the coefficients are the estimated coefficient stan-
dard errors.
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The preceding presentation of the regression equation and variable definition provides 
a good format for displaying the results of a regression analysis model. The results indicate 
that the conditional estimates of the effects of the three predictor variables are as follows:

1. An increase of one housing unit per square mile increases the effective property 
tax rate by 0.000567. Note that property tax rates are typically expressed in terms of 
 dollars per $1,000 of assessed property value. Thus, an increase of 0.000567 indicates 
that property tax rates are higher by $0.567 per $1,000 of assessed property value.

2. An increase of 1% of the total city revenue from state and federal grants increases the 
effective tax rate by 0.0183.

3. An increase of $1 in median per capita personal income leads to an expected de-
crease in the effective tax rate by 0.000191. Note that the ratio of 0.000191 divided by 
0.000446 gives a t value less than 2.

We emphasize again that these coefficient estimates are valid only for a model with all 
three predictor variables included.

To better understand the accuracy of these effects, we construct conditional 95% confi-
dence intervals. For the estimated regression model there are 120 - 3 - 12 = 16 degrees 
of freedom for error. Thus, the Student’s t statistic for computing confidence intervals is, 
from the Appendix, t16,0.025 = 2.12. The format for confidence intervals is as follows:

bj - tn-K-1, a>2sbj 6 bj 6 bj + tn-K-1, a>2sbj

Thus, the coefficient for the number of housing units per square mile has a 95% confi-
dence interval of

 0.000567 - 12.12210.0001392 6 b1 6 0.000567 + 12.12210.0001392
 0.000272 6 b1 6 0.000862

The coefficient for the percentage of revenue represented by grants has a 95% confi-
dence interval of

 0.0183 - 12.12210.00822 6 b2 6 0.0183 + 12.12210.00822
 0.0009 6 b2 6 0.0357

Finally, the coefficient for median per capita personal income has a 95% confidence 
interval of

 -0.000191 - 12.12210.0004462 6 b3 6 -0.000191 + 12.12210.0004462
 -0.001137 6 b3 6 0.000755

Again, we emphasize that these intervals are conditional on all three predictor vari-
ables being included in the model.

We see that the 95% confidence interval for b3 includes 0, and, thus, we could not 
reject the two-tailed hypothesis that this coefficient is 0. Based on this confidence inter-
val, we conclude that X3 is not a statistically significant predictor variable in the mul-
tiple regression model. However, the confidence intervals for the other two variables 
do not include 0, and, thus, we conclude that they are statistically significant.

Example 12.7 Effects of Fiscal Factors on Housing 
Prices (Regression Model Coefficient Estimation)

Northern City, Minnesota, was interested in the effect of local property development 
on the market price of houses in the city. Northern City is one of many small, nonmet-
ropolitan, midwestern cities with populations in the range from 6,000 to 40,000. One 
of the objectives was to determine how increased commercial property development 
would influence the value of local housing. Data are stored in the data file Citydatr.
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Solution To answer this question, data were collected from a number of cities and 
used to construct a regression model that estimates the effect of key variables on 
housing price. For this study the following variables were obtained for each city:

 Y 1hseval2 = mean market price for houses in the city
 X1 1sizehse2 = mean number of rooms in houses
 X2 1 incom722 = mean household income
 X3 1 taxrate2 = tax rate per thousand dollars of assessed value for houses
 X4 1Comper2 = percentage of taxable property that is commercial property

The multiple regression output, prepared using Minitab, is shown in Figure 12.9. The 
coefficient for the mean number of rooms in city houses is 7.878, with a coefficient stan-
dard deviation of 1.809. In this study housing values are in units of $1,000, with a mean 
of $21,000 over all cities. Thus, if the mean number of rooms in a city’s houses was 
larger by 1.0, then the mean price would be larger by $7,878. The resulting Student’s 
t statistic is 4.35 and the p-value is 0.000. Thus, the conditional hypothesis that this co-
efficient is equal to 0 is rejected. The same result occurs for the income and tax rate 
variables. The incom72 variable is in units of dollars, and, thus, if a city’s mean income 
is higher by $1,000, the coefficient of 0.003666 indicates that mean housing price will 
be $3,666 higher. If the tax rate increases by 1%, mean housing price is reduced by 
$1,718. We see that the regression analysis leads to the conclusion that each of these 
three variables is a significant predictor of the mean house price in the cities included 
in this study. However, we see that the coefficient for the percent of commercial prop-
erty, Comper, is -10.614, with a coefficient standard deviation of 6.491, resulting in a 
Student’s t statistic equal to -1.64. Note that here is an important area for judgment. 
The coefficient would have a single-tail p-value of 0.053 or a two-tailed p-value of 0.106. 
Thus, it appears to have some effect in reducing the mean price of houses. Given that 
the effects of house size, income, and tax rate on the market price for houses have been 
included, we see that the percent of commercial property does not increase housing 
prices. Thus, the argument that the market value of houses will increase if more com-
mercial property is developed is not supported by this analysis. That conclusion is true 
only for a model that includes these four predictor variables. Note also that the values 
of R2 = 47.4% and se (standard error of the regression) = 3.677 are included in the re-
gression output.

Figure 12.9 Housing Price Regression Model (Minitab Output)

Regression Analysis: hseval versus sizehse, income72, taxrate, Comper

The regression equation is
hseval = -28.1 + 7.88 sizehse + 0.00367 incom72 - 172 taxrate -10.6 Comper

Predictor
Constant
sizehse
incom72
taxrate
Comper

Coef
-28.075

7.878
0.003666
-171.80
-10.614

SE Coef
9.766
1.809

0.001344
43.09
6.491

T
-2.87
4.35
2.73
-3.99
-1.64

P
0.005
0.000
0.008
0.000
0.106

S = 3.67686 R-Sq = 47.4% R-Sq(adj) = 45.0%

Analysis of Variance

Source
Regression
Residual Error
Total

DF
4
85
89

SS
1037.49
1149.14
2186.63

MS
259.37
13.52

F
19.19

P
0.000



482 Chapter 12 Multiple Regression

The advocates of increased commercial development also claimed that increas-
ing the amount of commercial property would decrease the taxes paid on owner-
occupied houses. This claim was tested using the regression output in Figure 12.10, 
prepared using Excel. The coefficient estimators and their standard errors are indi-
cated. The Student’s t statistics for the size of house and the tax-rate coefficients are 
2.65 and 6.36, indicating that these variables are important predictors. The Student’s 
t statistic for income is 1.83, with a p-value of 0.07 for a two-tailed test. Thus, income 
has some influence as a predictor, but its effect is not as strong as the previous two 
variables. Again, we see a place for good judgment that considers the problem con-
text. The conditional hypothesis that increased commercial property decreases taxes 
on owner-occupied houses can be tested using the conditional Student’s t statistic 
for the variable “Comper” in the regression output. The conditional Student’s t sta-
tistic is -1.03, with a p-value of 0.308. Thus, the hypothesis that increased commer-
cial property does not decrease house taxes cannot be rejected. There is no evidence 
from this analysis that house taxes would be lowered if there was additional com-
mercial development.

Figure 12.10 House-Tax Regression Model (Excel Output)

Multiple coefficient
of determination R2

SSR
SSE
SST

Student t
statistics

Coefficient
standard errors

Coefficients
b0, b1, b2, b3, b4

Based on the regression analyses performed in this study, the consultants con-
cluded that there was no evidence that increased commercial property would either 
increase the market value of houses or lower the property taxes for a house.
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EXERCISES

Visit www.MyStatLab.com or www.pearsonhighered
.com/newbold to access the data files.

Basic Exercises
 12.23 The following are results from a regression model 

analysis:

 yn = 1.50 + 4.8x112.12 + 6.9x213.72 - 7.2x3     12.82
 R2 = 0.71     n = 24

The numbers below the coefficient estimates are the 
sample standard errors of the coefficient estimates.

a. Compute two-sided 95% confidence intervals for 
the three regression slope coefficients.

b. For each of the slope coefficients, test the hypothesis

H0 : bj = 0
 12.24 The following are results from a regression model 

analysis:

  yn = 2.50 + 6.8x113.12 + 6.9x213.72 - 7.2x313.22
 R2 = 0.85  n = 34

The numbers below the coefficient estimates are the 
estimated coefficient standard errors.

a. Compute two-sided 95% confidence intervals for 
the three regression slope coefficients.

b. For each of the slope coefficients test the hypothesis

H0 : bj = 0

 12.25 The following are results from a regression model 
analysis:

  yn = -101.50 + 34.8x1112.12 + 56.9x2123.72 - 57.2x3132.82
 R2 = 0.71  n = 65

The numbers in parentheses under the coefficients are 
the estimated coefficient standard errors.

a. Compute two-sided 95% confidence intervals for 
the three regression slope coefficients.

b. For each of the slope coefficients test the hypothesis

H0 : bj = 0

 12.26 The following are results from a regression model 
analysis:

  yn = -9.50 + 17.8x117.12 + 26.9x2113.72 - 9.2x313.82
 R2 = 0.71  n = 39

The numbers in parentheses under the coefficients are 
the estimated coefficient standard errors.

a. Compute two-sided 95% confidence intervals for 
the three regression slope coefficients.

b. For each of the slope coefficients test the hypothesis

H0 : bj = 0

Application Exercises
 12.27 An aircraft company wanted to predict the number of 

worker-hours necessary to finish the design of a new 

plane. Relevant explanatory variables were thought to 
be the plane’s top speed, its weight, and the number of 
parts it had in common with other models built by the 
company. A sample of 27 of the company’s planes was 
taken, and the following model was estimated:

y = b0 + b1x1 + b2x2 + b3x3 + e

where

 y = design effort, in millions of worker-hours
x1 = plane’s top speed, in miles per hour
x2 = plane’s weight, in tons
x3 =  percentage of parts in common with other 

models

The estimated regression coefficients were as follows:

b1 = 0.661 b2 = 0.065 b3 = -0.018

The estimated standard errors were as follows:

sb1
= 0.099 sb2

= 0.032 sb3
= 0.0023

a. Find 90% and 95% confidence intervals for b1.
b. Find 95% and 99% confidence intervals for b2.
c. Test against a two-sided alternative the null hy-

pothesis that, all else being equal, the plane’s 
weight has no linear influence on its design effort.

d. The error sum of squares for this regression was 0.332. 
Using the same data, a simple linear regression of 
design effort on the percentage of common parts was 
fitted, yielding an error sum of squares of 3.311. Test, 
at the 1% level, the null hypothesis that, taken together, 
the variable’s top speed and weight contribute nothing 
in a linear sense to explaining the changes in the vari-
able, design effort, given that the variable percentage of 
common parts is also used as an explanatory variable.

 12.28 The following model was fitted to a sample of 30 fami-
lies in order to explain household milk consumption:

y = b0 + b1x1 + b2x2 + e

where

 y = milk consumption, in quarts per week
x1 = weekly income, in hundreds of dollars
x2 = family size

The least squares estimates of the regression param-
eters were as follows:

b0 = -0.025 b1 = 0.052 b2 = 1.14

The estimated standard errors were as follows:

sb1
= 0.023 sb2

= 0.35

a. Test, against the appropriate one-sided alternative, 
the null hypothesis that, for fixed family size, milk 
consumption does not depend linearly on income.

b. Find 90%, 95%, and 99% confidence intervals for b2.

 12.29 The following model was fitted to a sample of 25 students 
using data obtained at the end of their freshman year in 
college. The aim was to explain students’ weight gains:

y = b0 + b1x1 + b2x2 + b3x3 + e

www.MyStatLab.com
www.pearsonhighered.com/newbold
www.pearsonhighered.com/newbold
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where

 y = weight gained, in pounds, during freshman year
x1 = average number of meals eaten per week
x2 = average number of hours of exercise per week
x3 = average number of beers consumed per week

The least squares estimates of the regression param-
eters were as follows:

b0 = 7.35 b1 = 0.653 b2 = -1.345 b3 = 0.613

The estimated standard errors were as follows:

sb1
= 0.189 sb2

= 0.565 sb3
= 0.243

a. Test, against the appropriate one-sided alternative, 
the null hypothesis that, all else being equal, hours 
of exercise do not linearly influence weight gain.

b. Test, against the appropriate one-sided alternative, 
the null hypothesis that, all else being equal, beer 
consumption does not linearly influence weight gain.

c. Find 90%, 95%, and 99% confidence intervals for b1.

 12.30 Refer to the data of Example 12.6.

a. Test, against a two-sided alternative, the null 
hypothesis that, all else being equal, median per 
capita personal income has no influence on the ef-
fective property tax rate.

b. Test the null hypothesis that, taken together, the 
three independent variables do not linearly influence 
the effective property tax rate.

 12.31 Refer to the data of Example 12.7 with the data 
file Citydatr.

a. Find 95% and 99% confidence intervals for the 
expected change in the market price for houses 
resulting from a one-unit increase in the mean 
number of rooms when the values of all other in-
dependent variables remain unchanged.

b. Test the null hypothesis that, all else being equal, 
mean household income does not influence the 
market price against the alternative that the higher 
the mean household income, the higher the market 
price.

 12.32 In a study of revenue generated by national lotteries, 
the following regression equation was fitted to data 
from 29 countries with lotteries:

 y = -31.323 + 0.4045x110.007552 + 0.8772x210.31072 - 365.01x31263.882 - 9.9298x413.45202
 R2 = .51

where
 y =  dollars of net revenue per capita per year gen-

erated by the lottery
x1 =  mean per capita personal income of the 

country
x2 =  number of hotel, motel, inn, and resort rooms 

per thousand persons in the country
x3 =  spendable revenue per capita per year gener-

ated by pari-mutuel betting, racing, and other 
legalized gambling

x4 =  percentage of the nation’s border contiguous 
with a state or states with a lottery

The numbers in parentheses under the coefficients are 
the estimated coefficient standard errors.

a. Interpret the estimated coefficient on x1.
b. Find and interpret a 95% confidence interval for 

the coefficient on x2 in the population regression.
c. Test the null hypothesis that the coefficient on x3 in the 

population regression is 0 against the alternative that 
this coefficient is negative. Interpret your findings.

 12.33 A study was conducted to determine whether certain 
features could be used to explain variability in the 
prices of furnaces. For a sample of 19 furnaces, the fol-
lowing regression was estimated:

 y = -68.236 + 0.0023x110.0052 + 19.729x218.9922 + 7.653x3    13.0822  R2 = 0.84

where

 y = price, in dollars
x1 = rating of furnace, in BTU per hour
x2 = energy efficiency ratio
x3 = number of settings

The numbers in parentheses under the coefficients are 
the estimated coefficient standard errors.

a. Find a 95% confidence interval for the expected 
increase in price resulting from an additional set-
ting when the values of the rating and the energy 
efficiency ratio remain fixed.

b. Test the null hypothesis that, all else being equal, 
the energy efficiency ratio of furnaces does not affect 
their price against the alternative that the higher the 
energy efficiency ratio, the higher the price.

 12.34 In a study of differences in levels of community demand 
for firefighters, the following sample regression was ob-
tained, based on data from 39 towns in Maryland:

 y = -0.00232 - 0.00024x110.000102 - 0.00002x210.0000182 + 0.00034x310.000122
+ 0.48122x410.779542 + 0.04950x510.011722 - 0.00010x610.000052 + 0.00645x710.003062

R 2 = 0.3572

where

 y = number of full@time firefighters per capita
x1 =  maximum base salary of firefighters, in thou-

sands of dollars
x2 = percentage of population
x3 =   estimated per capita income, in thousands of 

dollars
x4 = population density
x5 =  amount of intergovernmental grants per cap-

ita, in thousands of dollars
x6 = number of miles from the regional city
x7 =  percentage of the population that is male and 

between 12 and 21 years of age

The numbers in parentheses under the coefficients are 
the estimated coefficient standard errors.

a. Find and interpret a 99% confidence interval for b5.
b. Test, against a two-sided alternative, the null 

 hypothesis that b4 is 0, and interpret your result.
c. Test, against a two-sided alternative, the null 

 hypothesis that b7 is 0, and interpret your result.
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12.5 TESTS ON REGRESSION COEFFICIENTS

In the previous section we showed how a conditional hypothesis test can be conducted 
to determine if a specific variable coefficient is conditionally significant in a regression 
model. There are, however, situations where we are interested in the effect of the combi-
nation of several variables. For example, in a model that predicts quantity sold, we might 
be interested in the combined effect of both the seller’s price and the competitor’s price. In 
other cases we might be interested in knowing if the combination of all variables is a use-
ful predictor of the dependent variable.

Tests on All Coefficients

First, we present hypothesis tests to determine if sets of several coefficients are all simulta-
neously equal to 0. Consider again the model:

y = b0 + b1x1 + b2x1 + g + bKxK + e

We begin by considering the null hypothesis that all the coefficients are simultane-
ously equal to zero:

H0 : b1 = b2 = g = bK = 0

Accepting this hypothesis would lead us to conclude that none of the predictor variables 
in the regression model is statistically significant and, thus, that they provide no useful in-
formation. If this were to occur, then we would need to go back to the model-specification 
process and develop a new set of predictor variables. Fortunately, in most applied regres-
sion situations this hypothesis is rejected because the specification process usually leads 
to identification of at least one significant predictor variable.

To test this hypothesis, we can use the partitioning of variability developed in Section 12.3:

SST = SSR + SSE

Recall that SSR is the amount of variability explained by the regression and that SSE is the 
amount of unexplained variability. Also recall that the variance of the regression model 
can be estimated by using the following:

s2
e =

SSE1n - K - 12
If the null hypothesis that all coefficients are equal to 0 is true, then the mean square regression,

MSR =
SSR

K

is also a measure of error with K degrees of freedom. As a result, the ratio

 F =
SSR>K

SSE>1n - K - 12
 =

MSR
s2

e

has an F distribution with K degrees of freedom for the numerator and 1n - K - 12 
 degrees of freedom for the denominator. If the null hypothesis is true, then both the nu-
merator and the denominator provide estimates of the population variance. As noted in 
Section 11.5, the ratio of independent sample variances from populations with equal pop-
ulation variances follows an F distribution if the populations are normally distributed. 
The computed value of F is compared with the critical value of F from Appendix Table 9 
at a significance level a. If the computed value exceeds the critical value from the table, 
we reject the null hypothesis and conclude that at least one coefficient is not equal to 0. 
This test procedure is summarized in Equation 12.23.

User
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Test on All the Coefficients of a Regression Model
Consider the multiple regression model:

y = b0 + b1x1 + b2x2 + g + bKxK + e

To test the null hypothesis

H0 : b1 = b2 = g = bK = 0

against the alternative hypothesis

H1 : at least one bj ? 0

at a significance level a, we use the decision rule

 reject H0 : if  FK,n-K-1 =
MSR

s2
e

7 FK,n-K-1,a (12.23)

where FK,n-K-1,a is the critical value of F from Appendix Table 9 for which

P 1FK,n-K-1 7 FK,n-K-1, a2 = a
The computed random variable FK,n-K-1 follows an F distribution with numera-
tor degrees of freedom K and denominator degrees of freedom 1n - K - 12.

Example 12.8 Housing Price Prediction Model 
(Simultaneous Coefficient Testing)

During the development of the housing price prediction model for Northern City, the 
analysts wanted to know if there was evidence that the combination of four predictor 
variables was not a significant predictor of housing price. That is, they wanted to test, 
at a 99% confidence level, the hypothesis

H0 : b1 = b2 = b3 = b4 = 0

Solution This testing procedure can be illustrated by the housing price regression 
in Figure 12.9 prepared using the Citydatr data file. In the analysis of variance table, 
the computed F statistic is 19.19, with 4 degrees of freedom for the numerator and 
85 degrees of freedom for the denominator. The computation of F is as follows:

F =
259.37
13.52

= 19.184

This exceeds the critical value of F = 3.548 for a = 0.01 from Appendix Table 9. In ad-
dition, note that Minitab—and most statistics packages—compute the p-value, which 
in this example is equal to 0.000. Thus, we would reject the hypothesis that all coeffi-
cients are equal to zero.

Test on a Subset of Regression Coefficients

In the previous sections we developed hypothesis tests for individual regression param-
eters and for all regression parameters taken together. Next, we develop a hypothesis test 
for a subset of regression parameters, such as the combined price example previously dis-
cussed. We use this test to determine if the combined effect of several independent vari-
ables is significant in a regression model.

Consider a regression model that contains independent variables designated as Xj 
and Zj terms:

y = b0 + b1x1 + g + bKxK + a1z1 + g + aRzR + e
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and the null hypothesis to be tested is as follows:

H0 : a1 = a
2
= g = aR = 0 given bj ? 0, j = 1, c, K

If H0 is true, then the Zj variables should not be included in the regression model because 
they provide nothing further to explain the behavior of the dependent variable beyond 
what the Xj variables provided. The procedure for performing this test is summarized in 
Equation 12.24, following a detailed discussion of the testing procedure.

The test is conducted by comparing the error sum of squares, SSE, from the complete 
regression model, which includes both the X and the Z variables, with the SSE(R) from a 
restricted model that includes only the X variables. First, we run a regression on the com-
plete regression model and obtain the error sum of squares, designated as SSE. Next, we 
run the restricted regression, which excludes the Z variables (note that the coefficients aj 
are all restricted to values of 0 in this regression):

y = b0 + b1x1 + g + bKxK + e*

From this regression we obtain the restricted error sum of squares, designated as SSE(R). 
Then we compute the F statistic with r degrees of freedom for the numerator, where r is 
the number of variables removed simultaneously from the restricted model and there are 1n - K - R - 12 degrees of freedom for the denominator, the degrees of freedom for error 
in the model that includes both the X and the Z independent variables. The F statistic is

F =
1SSE1R2 - SSE2>R

s2
e

where s2
e  is the estimated variance of the error for the complete model. This statistic fol-

lows an F distribution with R degrees of freedom in the numerator and 1n - K - R - 12 
degrees of freedom in the denominator. If the computed F is greater than the critical value 
of F, then the null hypothesis is rejected, and we conclude that the Z variables as a set 
should be included in the model. Note that this test does not imply that individual Z vari-
ables should not be excluded by, for example, using the Student’s t test discussed previ-
ously. In addition, the test for all Z’s does not imply that a subset of the Z variables cannot 
be excluded by using this test procedure with a different subset of Z variables.

Test on a Subset of the Regression Parameters
Given a regression model with the independent variables partitioned into X 
and Z subsets,

y = b0 + b1x1 + g + bKxK + a1z1 + g + aRzR + e

To test the null hypothesis

H0 : a1 = a2 = g = g = aR = 0

which states that the regression parameters in a particular subset are simulta-
neously equal to 0, against the alternative hypothesis

H1 : At least one aj ? 0 1 j = 1, c, R2
We compare the error sum of squares for the complete model with the error 
sum of squares for the restricted model. First, run a regression for the complete 
model, which includes all independent variables, and obtain the error sum of 
squares, SSE. Next, run a restricted regression, which excludes the Z variables 
whose coefficients are the ai’s—the number of variables excluded is R. From 
this regression obtain the restricted error sum of squares, SSE(R). Then com-
pute the F statistic and apply the decision rule for significance level a:

 reject H0 if F =
1SSE1R2 - SSE2>R

s2
e

7 FR,n-K-R-1,a (12.24)
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Comparison of F and t Tests

If we used Equation 12.24 with R = 1, we could test the hypothesis that a single variable, 
Xj, does not improve the prediction of the dependent variable, given the other indepen-
dent variables in the model. Thus, we have the following hypothesis test:

 H0 : bj = 0 ubl ? 0, j ? l l = 1, c, K

 H1 : bj ? 0 ubl ? 0, j ? l l = 1, c, K

Previously, we saw that this test could also be performed using a Student’s t test. Using 
methods beyond this book, we can show that the corresponding F and t tests provide 
 exactly the same conclusions regarding the hypothesis test for a single variable. In addition, 
the computed t statistic for the coefficient bj is equal to the square root of the corresponding 
computed F statistic. That is,

t2
bj
= Fxj

where Fxj
 is the F statistic computed using Equation 12.24 when variable xj is excluded 

from the model and, thus, R = 1. We show this numerical result in Example 12.9.
Statistical distribution theory also shows that an F random variable with 1 degree of 

freedom in the numerator is the square of a t random variable with the same degrees of 
freedom as the denominator of the F random variable. Thus, the F and t tests will always 
provide the same conclusions regarding the hypothesis test for a single independent vari-
able in a multiple regression model.

Example 12.9 Housing Price Prediction for Small 
Cities (Hypothesis Tests for Coefficient Subsets)

The developers of the housing price prediction model from Example 12.8 wanted to 
determine if the combined effect of tax rate and percent commercial property contrib-
utes to the prediction after the effects of house size and income have been previously 
included. Data for this example are in the data file Citydatr.

Solution Continuing with the problem from Examples 12.7 and 12.8, we have 
a conditional test of the hypothesis that two variables are not significant predictors, 
given that the other two are significant predictors:

H0 : b3 = b4 = 0 u  b1, b2 ? 0

This test will be conducted using the procedure in Equation 12.24. Figure 12.9 presents 
the regression for the complete model with all four predictor variables. In that regres-
sion SSE = 1,149.14. In Figure 12.11 we have the reduced regression with only house 
size and income as predictor variables. In that regression SSE = 1,426.93. The hypoth-
esis is tested by first computing the F statistic whose numerator is the error sum of 
squares for the reduced model 3SSE1R24  minus the SSE for the complete model:

F =
11426.93 - 1149.142>2

13.52
= 10.27

The F statistic has 2 degrees of freedom—for the two variables being tested simulta-
neously—for the numerator and 85 degrees of freedom for the denominator. Note that 
the variance estimator, s2

e = 13.52, is obtained from the complete model in Figure 12.9, 
which has 85 degrees of freedom for error. The critical value for F with a = 0.01 and 2 
and 85 degrees of freedom, from Appendix Table 9, is approximately 4.9. Since the com-
puted value of F exceeds the critical value, we reject the null hypothesis that tax rate and 
percent commercial property are not in combination conditionally significant. The com-
bined effect of these two variables does improve the model that predicts housing price. 
Therefore, tax rate and percent commercial property should be included in the model.



 Exercises 489

We also computed this regression with the variable “comper” excluded and found 
that the resulting SSE was as follows:

SSE112 = 1,185.29

Then the computed F statistic for this variable was as follows:

F =
11185.29 - 1149.142>1

13.52
= 2.674

The square root of 2.674 is 1.64, which is the computed t statistic for the variable Comper 
in the regression output in Figure 12.9. Using either the computed F or the computed t, we 
would obtain this result for the hypotheses for this variable:

 H0 : bComper = 0 u  bl ? 0, l ? Comper

 H1 : bComper ? 0 u  bl ? 0, l ? Comper

Figure 12.11 Housing-Price Regression: Reduced Model (Minitab Output)

Regression Analysis: hseval versus sizehse, income72

The regression equation is
hseval = -42.2 + 9.14 sizehse + 0.00393 incom72

Predictor
Constant
sizehse
incom72

Coef
-42.208

9.135
0.003927

SE Coef
9.810
1.940

0.001473

T
–4.30
4.71
2.67

P
0.000
0.000
0.009

S = 4.04987 R-Sq = 34.7% R-Sq(adj) = 33.2%

Analysis of Variance

Source
Regression
Residual Error
Total

DF
2
87
89

SS
759.70
1426.93
2186.63

Source
sizehse
incom72

DF
1
1

 Seq SS
643.12
116.58

MS
379.85
16.40

F
23.16

P
0.000

SSE(R)

EXERCISES

Basic Exercise
 12.35 Suppose that you have estimated coefficients for the 

following regression model:

Y = b0 + b1X1 + b2X2 + b3X3

Test the hypothesis that all three of the predictor vari-
ables are equal to 0, given the following analysis of 
variance tables:

a. Analysis of variance

Source DF SS MS

Regression  3 4,500
Residual error 26 500

b. Analysis of variance

Source DF SS MS
Regression  3 9,780
Residual error 26 2,100

c. Analysis of variance

Source DF SS MS
Regression  3 46,000
Residual error 26 25,000

d. Analysis of variance

Source DF SS MS
Regression  3 87,000
Residual error 26 48,000
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Application Exercises
 12.36 An aircraft company wanted to predict the number of 

worker-hours necessary to finish the design of a new 
plane. Relevant explanatory variables were thought to 
be the plane’s top speed, its weight, and the number of 
parts it had in common with other models built by the 
company. A sample of 27 of the company’s planes was 
taken, and the following model was estimated:

y = b0 + b1x1 + b2x2 + b3x3 + e

where

 y = design effort, in millions of worker-hours
x1 = plane’s top speed, in miles per hour
x2 = plane’s weight, in tons
x3 =  percentage of parts in common with other 

models

The estimated regression coefficients were as follows:

b1 = 0.661 b2 = 0.065 b3 = -0.018

The total sum of squares and regression sum of 
squares were found to be as follows:

SST = 3.881 and SSR = 3.549

a. Test the null hypothesis:

H0 : b1 = b2 = b3 = 0

b. Set out the analysis of variance table.

 12.37 In a study of the influence of financial institutions on 
bond interest rates in Germany, quarterly data over 
a period of 12 years were analyzed. The postulated 
model was

y = b0 + b1x1 + b2x2 + e

where

 y = change over the quarter in the bond interest rates
x1 =  change over the quarter in bond purchases by fi-

nancial institutions
x2 =  change over the quarter in bond sales by finan-

cial institutions

The estimated partial regression coefficients were as 
follows:

b1 = 0.057 b2 = -0.065

The corrected coefficient of determination was found 
to be R2 = 0.463. Test the null hypothesis:

H0 : b1 = b2 = 0

 12.38 The following model was fitted to a sample of 30 fami-
lies in order to explain household milk consumption:

y = b0 + b1x1 + b2x2 + e

where

 y = milk consumption, in quarts per week
x1 = weekly income, in hundreds of dollars
x2 = family size

The least squares estimates of the regression param-
eters were as follows:

b0 = -0.025 b1 = 0.052 b2 = 1.14

The estimated standard errors were as follows:

sb1
= 0.023 sb2

= 0.35

The total sum of squares and regression sum of 
squares were found to be as follows:

SST = 162.1 and SSR = 88.2

a. Test the null hypothesis:

H0 : b1 = b2 = 0

b. Set out the analysis of variance table.

 12.39 The following model was fitted to a sample of 25 stu-
dents using data obtained at the end of their fresh-
man year in college. The aim was to explain students’ 
weight gains:

y = b0 + b1x1 + b2x2 + b3x3 + e

where
 y = weight gained, in pounds, during freshman year
x1 = average number of meals eaten per week
x2 = average number of hours of exercise per week
x3 = average number of beers consumed per week

The least squares estimates of the regression param-
eters were as follows:

b0 = 7.35 b1 = 0.653 b2 = -1.345 b3 = 0.613

The estimated standard errors were as follows:

sb1
= 0.189 sb2

= 0.565 sb3
= 0.243

The regression sum of squares and error sum of 
squares were found to be as follows:

SSR = 79.2 and SSE = 45.9

a. Test the null hypothesis:

H0 : b1 = b2 = b3 = 0

b. Set out the analysis of variance table.

 12.40 A dependent variable is regressed on K indepen-
dent variables, using n sets of sample observations. 
We denote SSE as the error sum of squares and R2 
as the coefficient of determination for this estimated 
regression. We want to test the null hypothesis that 
K1 of these independent variables, taken together, 
do not linearly affect the dependent variable, given 
that the other 1K - K12 independent variables are 
also to be used. Suppose that the regression is re-
estimated with the K1 independent variables of in-
terest excluded. Let SSE* denote the error sum of 
squares and R*2, the coefficient of determination for 
this regression. Show that the statistic for testing our 
null hypothesis, introduced in Section 12.5, can be 
 expressed as follows:1SSE* - SSE2>K1

SSE>1n - K - 12 =
R2 - R*2

1 - R2  #  n - K - 1
K1

 12.41 The following model was fitted to a sample of 30 fami-
lies in order to explain household milk consumption:

y = b0 + b1x1 + b2x2 + e
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where

y = milk consumption, in quarts per week
x1 = weekly income, in hundreds of dollars
x2 = family size

The least squares estimates of the regression param-
eters were as follows:

b0 = -0.025 b1 = 0.052 b2 = 1.14

The total sum of squares and regression sum of 
squares were found to be as follows:

SST = 162.1 and SSR = 88.2

A third independent variable—number of preschool 
children in the household—was added to the regres-
sion model. The sum of squared errors when this 
augmented model was estimated by least squares 
was found to be 83.7. Test the null hypothesis that, 
all other things being equal, the number of preschool 
children in the household does not linearly affect milk 
consumption.

 12.42 Suppose that a dependent variable is related to K in-
dependent variables through a multiple regression 
model. Let R2 denote the coefficient of determination 
and R2, the corrected coefficient. Suppose that n sets of 
observations are used to fit the regression.

a. Show that

R2 =
1n - 12R2 - K

n - K - 1

b. Show that

R2 =
1n - K - 12R2 + K

n - 1

c. Show that the statistic for testing the null hypothesis 
that all the regression coefficients are 0 can be written as

SSR>K
SSE>1n - K - 12 =

n - K - 1
K

 #  R
2 + A

1 - R2

where

A =
K

n - K - 1

12.6 PREDICTION

An important application of regression models is to predict or forecast values of the de-
pendent variable, given values for the independent variables. Forecasts can be computed 
directly from the estimated regression model using the coefficient estimates in that model, 
as shown in Equation 12.25.

Predictions from the Multiple Regression Models
Given that the population regression model

yi = b0 + b1x1i + b2x1i + g + bKxKi + ei

holds and that the standard regression assumptions are valid, let b0, b1, c, bK 
be the least squares estimates of the model coefficients, bj, where j = 1, c, K, 
based on the x1, x2, c, xK 1 i = 1, c, n2 data points. Then, given a new obser-
vation of a data point, x1,n+1, x2,n+1, c, xK,n+1 the best linear unbiased forecast 
of yn+1 is

 yni = b0 + b1x1i + b2x1i + g + bKxKi i = n + 1 (12.25)

It is very risky to obtain forecasts that are based on X values outside the 
range of the data used to estimate the model coefficients because we do not 
have data evidence to support the linear model at those points.

In addition to the predicted value of Y for a particular set of xj terms, we are often 
 interested in a confidence interval or a prediction interval associated with the prediction. 
As we discussed in Section 11.6, the confidence interval includes the expected value of Y 
with probability 1 - a. In contrast, the prediction interval includes individual predicted 
values—expected values of Y plus the random error term. To obtain these intervals, we 
need to compute estimates of the standard deviations for the expected value of Y and 
for the individual points. These computations are similar in form to those used in simple 
regression, but the estimator equations are much more complicated. The standard devia-
tions for predicted values, s

ny, are a function of the standard error of the estimate, se; the 
standard deviation of the predictor variables; the correlations between the predictor vari-
ables; and the square of the distance between the mean of the independent variables and 
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Example 12.10 Forecast of Savings and Loan Profit 
Margin (Regression Model Forecasts)

You have been asked to forecast the savings and loan profit margin for a year in which 
the percentage net revenue is 4.50 and there are 9,000 offices, using the savings and 
loan regression model. Data are stored in the file Savings and Loan.

Solution Using the notation from Equation 12.25, we have the following variables:

x1,n+1 = 4.50 x2,n+1 = 9,000

Using these values, we find that our point predictor of profit margin is as follows:

 ynn+1 = b0 + b1x1,n+1 + b2,n+1

 = 1.565 + 10.237214.502 - 10.000249219,0002 = 0.39

Thus, for a year when the percentage net revenue per deposit dollar is 4.50 and the 
number of offices is 9,000, we predict that the profit margin for savings and loan asso-
ciations will be 0.39.

Figure 12.12 Forecasts and Forecast Intervals for Multiple Regression (Minitab Output)

Regression Analysis: Y profit versus X1 revenue, X2 offices

The regression equation is
Y profit = 1.56 + 0.237 X1 revenue – 0.000249 X2 offices

Predictor
Constant
X1 revenue
X2 offices

Coef
1.56450
0.23720

-0.00024908

SE Coef
0.07940
0.05556

0.00003205

T
19.70
4.27
–7.77

P
0.000
0.000
0.000

S = 0.0533022   R-Sq = 86.5%   R-Sq(adj) = 85.3%

Analysis of Variance

Source
Regression
Residual Error
Total

DF
2

22
24

SS
0.40151
0.06250
0.46402

MS
0.20076
0.00284

F
70.66

P
0.000

Predicted Values for New Observations

New
Obs

1

New
Obs

1
X1 revenue

4.50

X2
offices

9000

Fit
0.3902

SE Fit
0.0277

95% CI
(0.3327, 0.4476)

95% PI
(0.2656, 0.5148)

Values of Predictors for New Observations

Predicted value

Prediction interval

Confidence interval

Predictior variable values

Standard error for
predicted value

the X terms for the prediction. This standard deviation is similar to the standard devia-
tion for simple regression predictions in Chapter 11. However, the equations for multiple 
regression are very complex and are not presented here—instead, we compute the values 
using Minitab. The standard deviations for the prediction interval, the confidence inter-
val, and the corresponding intervals are computed by most good statistics packages. Excel 
does not have the capability to compute the standard deviation of the predicted variables.
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Predicted values, confidence intervals, and prediction intervals can be computed 
directly in the Minitab regression routine.

The regression output is shown in Figure 12.12. The predicted value, yn = 0.39, and 
its standard deviation, 0.0277, are presented, along with the confidence interval and the 
prediction interval. The confidence interval—CI—provides an interval for the expected 
value of Y on the linear function defined by the values of the independent variables. This 
interval is a function of the standard error of the regression model, the distance that the 
xj values are from their individual sample means, and the correlation between the xj vari-
ables used to fit the model. The prediction interval—PI—provides an interval for a single 
observed value. Thus, it includes the variability associated with the expected value plus 
the variability of a single point about the predicted value.

EXERCISES

Visit www.MyStatLab.com or www.pearsonhighered
.com/newbold to access the data files.

Basic Exercise
 12.43 Given the estimated multiple regression equation

yn = 6 + 5x1 + 4x2 + 7x3 + 8x4

  what is the predicted value of Y in each case?

a. x1 = 10, x2 = 23, x3 = 9, and x4 = 12
b. x1 = 23, x2 = 18, x3 = 10, and x4 = 11
c. x1 = 10, x2 = 23, x3 = 9, and x4 = 12
d. x1 = -10, x2 = 13, x3 = -8, and x4 = -16

Application Exercises
 12.44 The following model was fitted to a sample of 25 students 

using data obtained at the end of their freshman year in 
college. The aim was to explain students’ weight gains:

y = b0 + b1x1 + b2x2 + b3x3 + e

  where

  y =  weight gained, in pounds, during freshman  
year

x1 = average number of meals eaten per week
x2 =  average number of hours of exercise per week
x3 = average number of beers consumed per week

  The least squares estimates of the regression param-
eters were as follows:

b0 = 7.35 b1 = 0.653 b2 = -1.345 b3 = 0.613

  Predict the weight gain for a freshman who eats an 
average of 20 meals per week, exercises an average 
of 10 hours per week, and consumes an average of 6 
beers per week.

 12.45 The following model was fitted to a sample of 30 fam-
ilies in order to explain household milk consumption:

y = b0 + b1x1 + b2x2 + e

  where

  y = milk consumption, in quarts per week
x1 = weekly income, in hundreds of dollars
x2 = family size

  The least squares estimates of the regression param-
eters were as follows:

b0 = -0.025 b1 = 0.052 b2 = 1.14

  Predict the weekly milk consumption of a family of 
four with an income of $600 per week.

 12.46 An aircraft company wanted to predict the number of 
worker-hours necessary to finish the design of a new 
plane. Relevant explanatory variables were thought 
to be the plane’s top speed, its weight, and the num-
ber of parts it had in common with other models 
built by the company. A sample of 27 of the compa-
ny’s planes was taken, and the following model was 
estimated:

y = b0 + b1x1 + b2x2 + b3x3 + e

  where

  y = design effort, in millions of worker-hours
x1 = plane’s top speed, in miles per hour
x2 = plane’s weight, in tons
x3 =  percentage number of parts in common with 

other models

  The estimated regression coefficients were as follows:

b1 = 0.661 b2 = 0.065 b3 = -0.018

  and the estimated intercept was 2.0.
Predict design effort for a plane with a top speed 

of Mach 1.0, weighing 7 tons, and having 50% of its 
parts in common with other models.

 12.47 A real estate agent hypothesizes that in her town the 
selling price of a house in dollars (y) depends on its 
size in square feet of floor space 1x12, the lot size in 
square feet 1x22, the number of bedrooms 1x32, and 
the number of bathrooms 1x42. For a random sample 
of 20 house sales, the following least squares esti-
mated model was obtained:

 yn = 1998.5 + 22.352x1 + 1.4686x2 + 6767.3x3 + 2701.1x412.55432   11.44922   11820.82   11996.22
  R2 = 0.9843

www.MyStatLab.com
www.pearsonhighered.com/newbold
www.pearsonhighered.com/newbold
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  The numbers in parentheses under the coefficients 
are the estimated coefficient standard errors.

a. Interpret in the context of this model the esti-
mated coefficient on x2.

b. Interpret the coefficient of determination.
c. Assuming that the model is correctly specified, 

test, at the 5% level against the appropriate one-
sided alternative, the null hypothesis that, all else 
being equal, selling price does not depend on 
number of bathrooms.

d. Estimate the selling price of a house with 1,250 
square feet of floor space, a lot of 4,700 square feet, 
3  bedrooms, and 1 bathroom.

 12.48 Transportation Research, Inc., has asked you to 
prepare a multiple regression equation to esti-

mate the effect of variables on fuel economy. The data 
for this study are contained in the data file Motors, 

and the dependent variable is miles per gallon—
milpgal—as established by the Department of Trans-
portation certification.

a. Prepare a regression equation that uses vehicle 
horsepower—horsepower—and vehicle weight—
weight—as independent variables. Determine 
the predicted value, the confidence interval of the 
prediction, and the prediction interval when the 
horsepower is 140 and the vehicle weight is 3,000 
pounds.

b. Prepare a second regression equation that adds the 
number of cylinders—cylinder—as an independent 
variable to the equation from part a. Determine 
the predicted value, the confidence interval of the 
prediction, and the prediction interval when the 
horsepower is 140, the number of cylinders is 6 and 
the vehicle weight is 3,000 pounds.

12.7  TRANSFORMATIONS FOR NONLINEAR  
REGRESSION MODELS

We have seen how regression analysis can be used to estimate linear relationships that 
predict a dependent variable as a function of one or more independent variables. These 
applications are very important. However, in addition, there are a number of economic 
and business relationships that are not strictly linear. In this section we develop proce-
dures for modifying certain nonlinear model formats so that multiple regression proce-
dures can be used to estimate the model coefficients. Thus, our objective in Sections 12.7 
and 12.8 is to expand the range of problems that are adaptable to regression analysis. In 
this way we see that regression analysis has even broader applications.

By examining the least squares algorithm, we will see that, with careful manipulation 
of nonlinear models, it is possible to use least squares for a broader set of applied prob-
lems. The assumptions concerning independent variables in multiple regression are not 
very restrictive. Independent variables define points at which we measure a random vari-
able Y. We assume that there is a linear relationship between the levels of the independent 
variables Xj, where j = 1, c, K, and the expected value of the dependent variable Y. 
We can take advantage of this freedom to expand the set of models that can be estimated. 
Thus, we can move beyond linear models in our multiple regression applications. Three 
examples are shown in Figure 12.13:

Figure 12.13 Examples of Quadratic Functions
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 1. Supply functions may be nonlinear.
 2. The increase in total output with increases in the number of workers may become 

flatter as more workers are added.
 3. Average cost per unit produced is often minimized at an intermediate level of 

production.

Quadratic Transformations

We have spent considerable time developing regression analysis to estimate linear equa-
tions. There are also many processes that can best be represented by nonlinear equations. 
Total revenue has a quadratic relationship with price, with maximum revenue occurring 
at an intermediate price level if the demand function has a negative slope. In many cases 
the minimum production cost per unit occurs at an intermediate level of output, with cost 
per unit decreasing as we approach the minimum cost per unit and then increasing after 
passing the minimum unit cost level. We can model a number of these economic and busi-
ness relationships by using a quadratic model:

Y = b0 + b1X1 + b2X
2
1 + e

To estimate the coefficients of a quadratic model for applications such as these, we can 
transform or modify the variables, as shown in Equations 12.26 and 12.27. In this way 
a nonlinear quadratic model is converted to a model that is linear in a modified set of 
variables.

Quadratic Model Transformations
The quadratic function

 Y = b0 + b1X1 + b2X
2
1 + e (12.26)

can be transformed into a linear multiple regression model by defining new 
variables:

 z1 = x1

 z2 = x2
1

and then specifying the model as

 yi = b0 + b1z1i + b2z2i + ei (12.27)

which is linear in the transformed variables. Transformed quadratic variables 
can be combined with other variables in a multiple regression model. Thus, 
we can fit a multiple quadratic regression using transformed variables. The 
goal is to find models that are linear in other mathematical forms of a variable.

By transforming the variables, we can estimate a linear multiple regression model and 
use the results as a nonlinear model. Inference procedures for transformed quadratic mod-
els are the same as those that we have previously developed for linear models. In this way 
we avoid confusion that would result if different statistical procedures were used for linear 
versus quadratic models. The coefficients must be combined for interpretation. Thus, if we 
have a quadratic model, then the effect of a variable, X, is indicated by the coefficients of 
both the linear and the quadratic terms. We can also perform a simple hypothesis test to de-
termine if a quadratic model is an improvement over a linear model. The Z2 or X2

1 variable 
is merely an additional variable whose coefficient can be tested—H0 : b2 = 0—using the 
conditional Student’s t or F statistic. If a quadratic model fits the data better than a linear 
model, then the coefficient of the quadratic variable—Z2 = X2

1—will be significantly differ-
ent from 0. The same approach applies if we have variables such as Z3 = X3

1 or Z4 = X2
1X2.
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Example 12.11 Production Costs (Quadratic Model 
Estimation)

Arnold Sorenson, production manager of New Frontiers Instruments, Inc., was inter-
ested in estimating the mathematical relationship between the number of electronic 
assemblies produced during an 8-hour shift and the average cost per assembly. This 
function would then be used to estimate cost for various production order bids and to 
determine the production level that would minimize average cost. Data are found in 
the data file Production Cost.

Solution Arnold collected data from nine shifts during which the number of 
assemblies ranged from 100 to 900. In addition, he obtained the average cost per unit 
for those days from the accounting department. These data are presented in a scatter 
plot prepared using Excel, shown in Figure 12.14. As a result of his study of economics 
and his experience, Arnold suspected that the function might be quadratic with an 
intermediate minimum average cost. He designed his analysis to consider both a linear 
and a quadratic average production cost function.

Figure 12.14 Mean Production Cost as a Function of Number of Units

Number of
Units

Mean Cost
per Unit

100
210
290
415
509
613
697
806
908

5.11
4.42
4.07
3.52
3.33
3.44
3.77
4.07
4.28

3
0 200 400 600 800 1000

3.5

4

4.5

5

5.5
M

ea
n

 C
o

st
 p

er
 U

n
it

Number of Units per Shift

Figure 12.15 is the simple regression of cost as a linear function of the number of 
units. We see that the linear relationship is almost flat, indicating no linear relationship 

Figure 12.15 Linear Regression Average Cost on Number of Units

Regression Analysis: Mean Cost per Unit versus Number of Units

The regression equation is
Mean Cost per Unit = 4.43 - 0.000855 Number of Units

Predictor
Constant
Number of Units

Coef
4.4330

-0.0008547

SE Coef
0.3994

0.0007029

T
11.10
-1.22

P
0.000
0.263

S = 0.547614 R-Sq = 17.4% R-Sq(adj) = 5.6%

Analysis of Variance

Source
Regression
Residual Error
Total

DF
1
7
8

SS
0.4433
2.0992
2.5425

MS
0.4433
0.2999

F
1.48

P
0.263
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Logarithmic Transformations

A number of economic relationships can be modeled by exponential functions. For exam-
ple, if the percent change in quantity of goods sold changes linearly in response to percent 
changes in the price, then the demand function will have an exponential form:

Q = b0P
b1

where Q is the quantity demanded and P is the price per unit. Exponential demand 
functions have constant elasticity, and, thus, a 1% change in price results in the same 
percent change in quantity demanded for all price levels. In contrast, linear de-
mand models indicate that a unit change in the price variable will result in the same 
change in quantity demanded for all price levels. Exponential demand models are 
widely used in the analysis of market behavior. One important feature of exponen-
tial models is that the coefficient b1 is the constant elasticity, e, of demand Q with 
respect to price P:

e =
0Q>Q
0P>P = b1

This result is developed in most microeconomics textbooks. Exponential model coeffi-
cients are estimated using logarithmic transformations, as shown in Equation 12.29.

The logarithmic transformation assumes that the random error term multiplies the 
true value of Y to obtain the observed value. Thus, in the exponential model the error is 
a percentage of the true value, and the variance of the error distribution increases with 
increases in Y. If this result is not true, the log transformation is not correct. In that case a 
much more complex nonlinear estimation technique must be used. Those techniques are 
considerably beyond the scope of this book.

between average cost and number of units produced. If Arnold had simply used this re-
lationship, he would have been led to serious errors in his cost-estimation procedures.

Figure 12.16 presents the quadratic regression that shows mean cost per unit as a 
nonlinear function of the number of units produced. Note that b2 is different from 0 
and thus should be included in the model. In addition, note that R2 for the quadratic 
model is 0.962 compared to 0.174 for the linear model. By using the quadratic model, 
Arnold has produced a substantially more useful mean cost model.

Figure 12.16 Quadratic Model Analysis for Average Cost on Number of Units

Regression Analysis: Mean Cost per Unit versus Number of Units,
No Units Squared

The regression equation is
Mean Cost per Unit = 5.91 - 0.00884 Number of Units + 0.000008
No Units Squared

Predictor
Constant
Number of Units
No Units Squared

Coef
5.9084

-0.0088415
-0.00000793

SE Coef
0.1614

0.0007344
0.00000071

T
36.60
-12.04
11.15

P
0.000
0.000
0.000

S = 0.126875 R-Sq = 96.2% R-Sq(adj) = 94.9%

Analysis of Variance

Source
Regression
Residual Error
Total

DF
2
6
8

SS
2.4459
0.0966
2.5425

MS
1.2230
0.0161

F
75.97

P
0.000




